INTERSEXUALITY

ABNORMAL SEXUAL DEVELOPMENT

1-Sex chromosome abnormality Mosaicism associated with gonadal dysgenisis ⇒ 45X/46XY

2-Testis incapable of producing testosterone

3-End organs incapable of utilizing testosterone eg. 5α reductase deficiency, failure of testosterone binding to receptors (androgen insensitivity)

ABNORMAL SEXUAL DEVELOPMENT

4-Defficient production of MIF ⇒ ♀ internal genital organs in other wise normal ♂

5-Musculanization of the ♀ external genitalia due to □↑ androgen eg. Congenital adrenal hyperplasia

6-Rarely 46XX male due to the presence of a gene the SRY gene (Sex determining Region Y)

7-True hermaphroditism ⇒ the presence of testicular & gonadal tissue in the same individual

1-MUSCULINIZED ♀ ♀ PSEUDOHERMAPHRODITES

-46XX

 Exposed to androgens in utero
 ⇒ varying degrees of musculinization of the external genitalia

A-CONGENITAL ADRENAL HYPER PLASIA (CAH)

- The most common cause of \mathcal{Q} intersex
- Deficiencies of the various enzymes required for cortisol & aldosterone biosynthesis (21-hydroxylase, 11βhyroxilase, 3βhydroxisteroid dehydrogenase)
- 21-hydroxylase deficiency is the commonest defect 90%
- Affected Q may present at birth with ambiguous genitalia -enlargement of the clitoris
 - -excessive fusion of the genital folds obscuring the vagina & urethra

Congenital Adrenal Hyperplasia

A-CONGENITAL ADRENAL HYPER PLASIA (CAH)

-thickening & rugosity of the labia majora resembling the scrotum

- A dangerous salt losing syndrome due to deficiency of aldosterone may occure in some pt
- Delayed menarche & menstrual irregularities
- INVESTIGATIONS

Karyotyping 17-α-hydroxiprogestrone 1 17-ketosteroids (androgens) in urine Electrolytes U/S

A-CONGENITAL ADRENAL HYPER PLASIA (CAH)

• Rx

1- Cortisol or its synthetic drevatives ⇒ suppress the adrenals ⇒ ↓ androgen production
 2-Corrective surgery

 clitroplasty (neonatal period)
 division of the fused labial folds
 (delayed till puberty)

MUSCULINIZED Q

B- EXPOSURE OF THE MOTHER TO ANDROGENS

-Rare

-Androgen secreting tumours, eg. luteoma, arrhenoblastoma

-Drugs

Musculanization of female child Mother exposed to methyle testosterone

2-UNDERMUSCULINIZED ♂ ♂ PSEUDOHERMAPHRODITES

A-ANATOMICAL TESTICULAR FAILURE -Pure gonadal dysgenisis *normal chromosomes 46XY *variable features – mild-severe (normal \bigcirc , \bigcirc with mild musculinization) *uterus present -Mosaicism 45X/46XY *Variable features (normal \mathcal{Q} , ambiguous genitalia, nearly normal \mathcal{Z})

Seudohermaphrodites

B-ENZYMETIC TESTICULAR FAILURE

Enzymetic defects in the biosynthesis of testosterone These defects are usually incomplete ⇔ Varying degrees of musculinization of the external genetalia Uterus & tubes ⇔ absent (MIF produced by the testes)

Seudohermaphrodites

C-ENDORGAN INSINSITIVITY $1-5\alpha$ REDUCTASE DEFICIENCY Autosomal recessive Formation of the \bigcirc external genitalia requiers 5α REDUCTASE testosterone $\Rightarrow \Rightarrow \Rightarrow dihydrotestosterone$

Formation of the internal wollfiane structures respond directly to testosterone

- -External genitalia \bigcirc with mild musculinization
- -Absent uterus
- -At puberty \Rightarrow 1 testosterone secretion \Rightarrow virilization

5-alpha reductase deficiency

C-ENDORGAN INSINSITIVITY

2-ANDROGEN INSINSITIVITY (TESTICULAR FEMINIZATION)

Etiology

Lack of androgen receptors ⇒ complete (classical TF)
 Receptors are present but low in NO. or inactive
 ⇒ incomplete androgen insinsitivity

Clinical features of Complete Androgen Insinsitivity Normal ♀ external genitalia with blind vagina Absent uterus Breast development Present with 1ry amenorrhea Testes found in abdomen or inguinal canal Normal ♂ Testosterone level

2-ANDROGEN INSINSITIVITY

Rx

Gonadectomy after puberty due to 1 incidence of malignant change (5%) Oestrogen replacement

INCOMPLETE ANDROGEN INSINSITIVITY Ambiguous genitalia with varying degrees Breast development Musculinization at puberty

3-TRUE HERMAPHRODITES

HAVE BOTH OVARIAN & TESTICULAR TISSUE Ovotestes on one side & ovary or testes on the other Ovary on one side & testes on the other Bilateral ovotestes Varying degrees of sexual ambiguity

KARYOTYPING
46XX ⇔ most common
46XX/XY
46XY
46XY/47XXY

TRUE HERMAPHRODITE

Klinefelter Syndrome 47XXY Normal male external genitalia Tall stature Gynecomastia Azospermia (infertility)