Orthopedic Emergencies 2

Ahmad Bin Nasser MBBS, FRCSC

Assistant Professor
Course 452
College of Medicine
KSU

- Open Fractures
- Fractures with neurovascular Injuries
- Unstable Polytrauma Patients With A Pelvic Fracture

Objectives

- To be able to identify and diagnose patients with an open fracture, a fracture with nerve or vascular injury and polytrauma patients with pelvic injuries
- To be knowledgeable about the pathophysiology and morbidity associated with these injuries
- To be able to apply the principles of management of these injuries at the site of accident and in the emergency room

Open Fractures

- Definition:
 - A fracture that that at some point communicated with the environment
 - An open joint is managed similarly

Open fracture

- Usually requires higher injury
 - Not always!
- Sometimes can be missed

Open fractures

- · Commonly occurs in bones with minimal soft tissue coverage
- · Usually higher energy is required in deep bones

Open fractures

- Pathology:
 - Traumatic energy to the soft tissue and bone
 - Inoculation of organisms
 - Necrotic tissue
 - Injury to vessels and microvasculature
 - Raised compartment pressure
 - O Ischemia and lack of immune response

OPEN fractures

- Infection in the presence of a fracture
 - Difficult to eradicate
 - Prolonged antibiotics
 - Multiple surgeries
 - Significant morbidity
 - Significant costs

Open fractures

- An open fracture is a usually a "red flag" warning of significant trauma
 - O Detailed assessment of the patient is necessary
- · An open fracture is associated with significant morbidity
 - O Must act quickly

Open fractures

- A delay in management is proven to increase the likelihood of complications
 - O Give urgent priority while triaging, provide initial management and consult urgently

Open fractures Diagnosis

- Some times obvious!
- Other times, settle,,, be observant
- A wound close to a fracture is an open fracture until proven otherwise!
- Whenever a fracture is diagnosed, go back and check the skin

Open fractures Diagnosis

- A small wound continuously oozing blood, especially, if you see fat droplets within the blood, is an open fracture!
- Not always close to the fracture
- Don't probe!!
- If in doubt, use good light, if there is a break in the dermis or fat is seen, call it an open fracture
- Better to overcall than miss it!

• Open fractures Algorithm

- Assess and stabilize the patient, ATLS principles
- Assess the condition of the soft tissue and bone to help grade the open fracture
- Manage the wound locally
- Stabilize the fracture
- IV antibiotics
- Tetanus status

Open fractures Algorithm

- Assess and stabilize the patient, ATLS principles
- Assess the condition of the soft tissue and bone to help grade the open fracture
- Manage the wound locally
- Stabilize the fracture
- IV antibiotics
- Tetanus status

- If polytrauma, apply ATLS principles
- If isolated injury:
 - Mechanism and circumstances of injury
 - Time since injury
 - PMH/PSH/Allergy/Drugs/Smoking
 - Tetanus vaccination status

Open fractures

Assessment

- Examine the affected region for:
 - Soft tissue:
 - Degree of contamination
 - Necrotic and devitalized tissue
 - Size of wound
 - Coverage loss
 - Compartment syndrome

Fig. 23.40 Fasciotomy closure device being used to close a large fasciotomy over a period of 1 week; (a) immediately postfasciotomy; (b) 4 days later; and (c) after healing.

- · Bone:
 - Comminution
 - Stripping of bone periosteum
 - Away from injury to joint above and below
 - X-rays to joint above and below

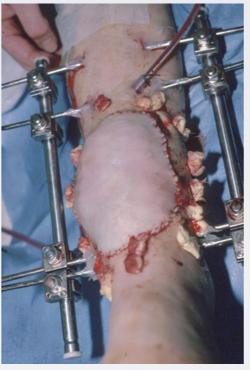
- Neurovascular status distally:
 - On arrival and post reduction and splinting later

- Open fracture grade:
 - Grade 1:

O Less or equal to 1 cm, clean, non segmental nor severely comminuted fracture, less than 6 hours since injury

• Grade 2 open fracture:

O>1cm wound, not extensive soft tissue injury or contamination, non segmental nor severely comminuted fracture, no bone stripping and with adequate soft tissue coverage



Open fractures Assessment

- Grade 3 open fracture:
 - 3A: Any size with extensive soft tissue contamination or injury but not requiring soft tissue coverage procedure, or with a segmental or severely comminuted fracture, or late presentation more than 6 hours
 - 3B: Any open fracture that requires soft tissue coverage procedure
 - 3C: Any open fracture that requires vascular repair

Local:

- Take a picture!
- If dirty, irrigate with normal saline to remove gross contamination
- If bone sticking out try to reduce gently then immobilize and re-check neurovascular status
- Cover with sterile wet gauze
- If bleeding apply direct pressure on wound
- No culture swabs in ER

Antibiotics:

- First generation Cephalosporin for gram positives (Ex: Cefazolin) in all open fractures
- Aminoglycoside to cover gram negatives (Ex: Gentamicin) sometimes not required in grade 1 but in general it is safer to give in all grades
- Add penicillin or ampicillin or clindamycin for clostridium in grade 3 open fractures and all farm and soaked wounds

- Tetanus prevention:
- Wound types:

1. Clean wounds:

- O <6 hours from injury
- O Not a farm injury
- O No significant devitalized tissue
- O Non immersed wound
- O Non contaminated wound

2. Other wounds

Tetanus prevention:

Clean wounds			Other wounds		
Completed vaccination		Not completed or unknown	Completed vaccination		Not completed or unknown
Booster < 10 years	Booster >10 years	Td 0.5ml IM	Booster < 5years	Booster > 5 years	TIG 250U And Td 0.5ml IM
nothing	Td 0.5 ml IM		nothing	Td 0.5ml IM	

- As soon as patient is stable and ready, alert the OR, and consent for surgery
- · Plan: Irrigation, debridement and fracture stabilization
- The sooner the less risk of further morbidity

- In the OR:
 - Extend wound if necessary
 - Thorough irrigation
 - Debride all necrotic tissue
 - Remove bone fragments without soft tissue attachment except articular fragments
 - Usually requires second look or more every 48-72 hours
 - Generally do not close open wounds on first look

- Fracture management:
 - Generally avoid internal fixation (plate and screw)
 - Generally external fixator is used.
 - Femur and tibia fractures can usually be treated immediately with IM nail except severe injuries and contamination
 - Observe for compartment syndrome postoperatively

• Open fractures Results

- If all principles applied:
 - ► 2% complication rate in grade 1
 - ► 10% complication rate in grade 2
 - ► Up to 50% complication rate in grade 3

Fractures with nerve or vascular injuries

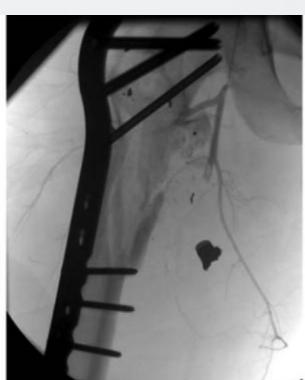
- Don't miss it !!!!
- Always perform an accurate assessment at presentation, post manipulation and reduction, post surgical fixation, serially until condition stabilizes
- · Serial examination helpful in deciding line of treatment
- · Serial examination helps avoid confusion

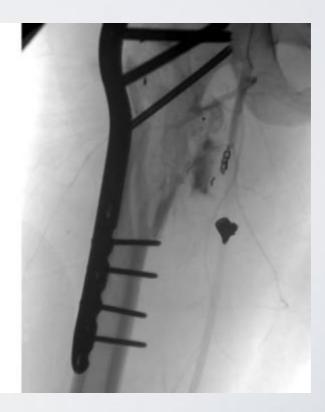
Fractures with nerve or vascular injuries

· High correlation between vascular injury and nerve injury

O Proximity

Fractures with nerve or vascular injuries


- Mechanisms:
 - Penetrating trauma
 - High energy blunt trauma
 - Significant fracture displacement
 - Keep in mind tissue recoil at presentation



Vascular injuries

- Direct laceration
- Traction and shearing

Vascular injuries Assessment

- Always check:
 - · Pulse, Color, Capillary refill, Temperature, compartment pressure
- Keep high index of suspicion:
 - High energy trauma
 - Associated nerve injuries
 - Fractures/ Dislocations around the knee

Vascular injuries

Assessment

Table 1

Hard and Soft Signs of Vascular Injury Associated With Extremity Trauma

Hard signs

Pulselessness

Pallor

Paresthesia

Pain

Paralysis

Rapidly expanding hematoma

Massive bleeding

Palpable or audible bruit

Soft signs

History of bleeding in transit

Proximity-related injury

Neurologic finding from a nerve adjacent to a named artery

Hematoma over a named artery

Vascular injuries Assessment

Hard signs > realignment of limb > if persistant >

Ovascular intervention

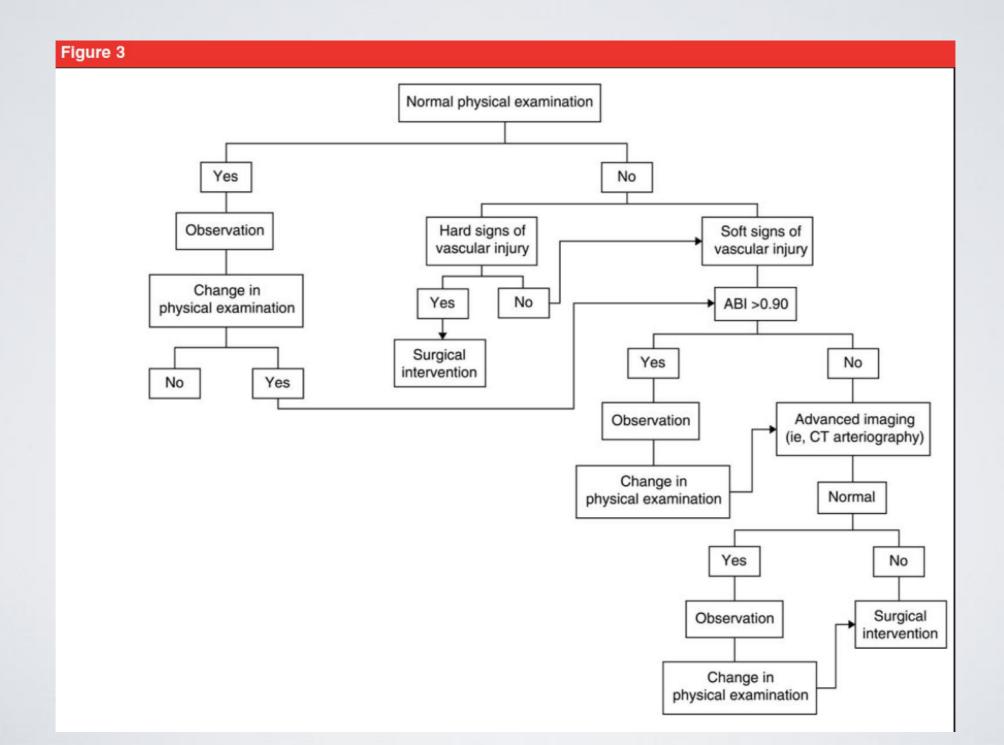
Hard signs > realignment of limb > improved >

O Close observation


ORealignment can result in unkincking of vessels, lowering compartment pressure, relaxation of arterial spasm

Vascular injuries Assessment

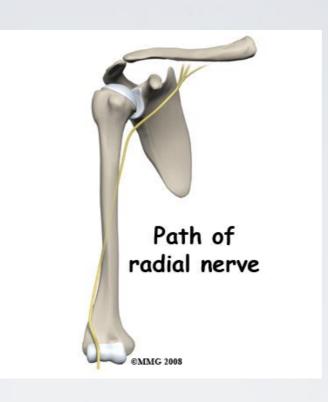
- · ABI
 - < 0.9 associated with vascular pathology
 - Rarely can give false negative result (Ex. Profunda femoris)
 - Always used in high risk fractures (knee)
 - If positive > Urgent vascular intervention


Vascular injuries Assessment

- · Angiography, CT angiography
- Gold standard
- Not without risks
- Vascular surgeon to arrange with interventional radiologist

- Once vascular injury is confirmed:
 - Coordination between:
 - Vascular surgeon
 - Orthopedic surgeon
 - General surgeon
- O To emergently re-establish perfusion and protect repair with skeletal stabilization

- Warm ischemia time dictates treatment
- Most times, a quick external fixator is applied, followed by vascular repair
- Avoid prolonging warm ischemia to do



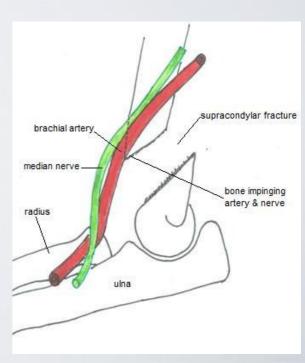
- Prolonged warm ischemia >6 hours
 - O Prophylactic fasciotomy
- Grade 3C open fractures have the worst outcome
- Amputation may be necessary in severe cases

- Cause of medico-legal concern
- Accurate assessment and documentation at presentation, post reduction, post surgery is essential
- Remember to examine for motor and sensation prior to sedation

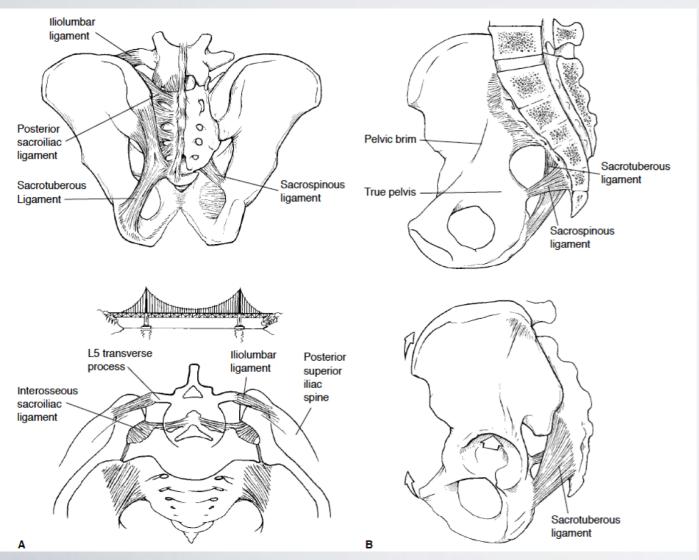
- · Closed fractures not requiring surgery with nerve injuries:
 - O Usually good outcome >80%
 - O Usually managed conservatively in the early stages
 - O Recovery may take more than 6 months

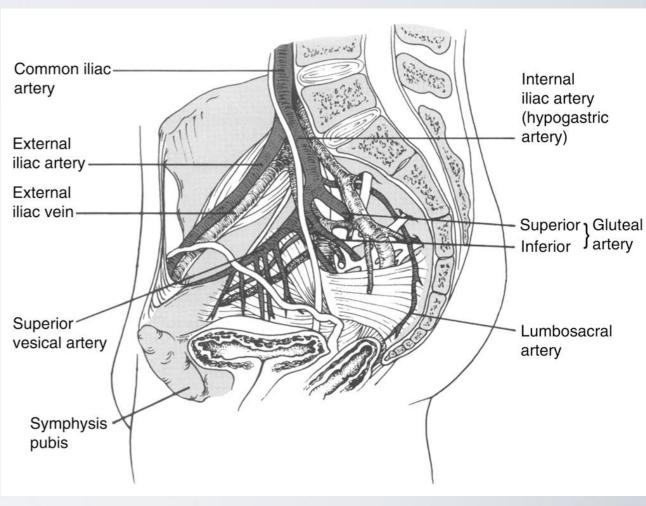
- Intact nerve before reduction, absent after reduction:
 - Controversial management
 - Usually observe

- Fracture requiring surgery with nerve injury:
 - O Limited exploration

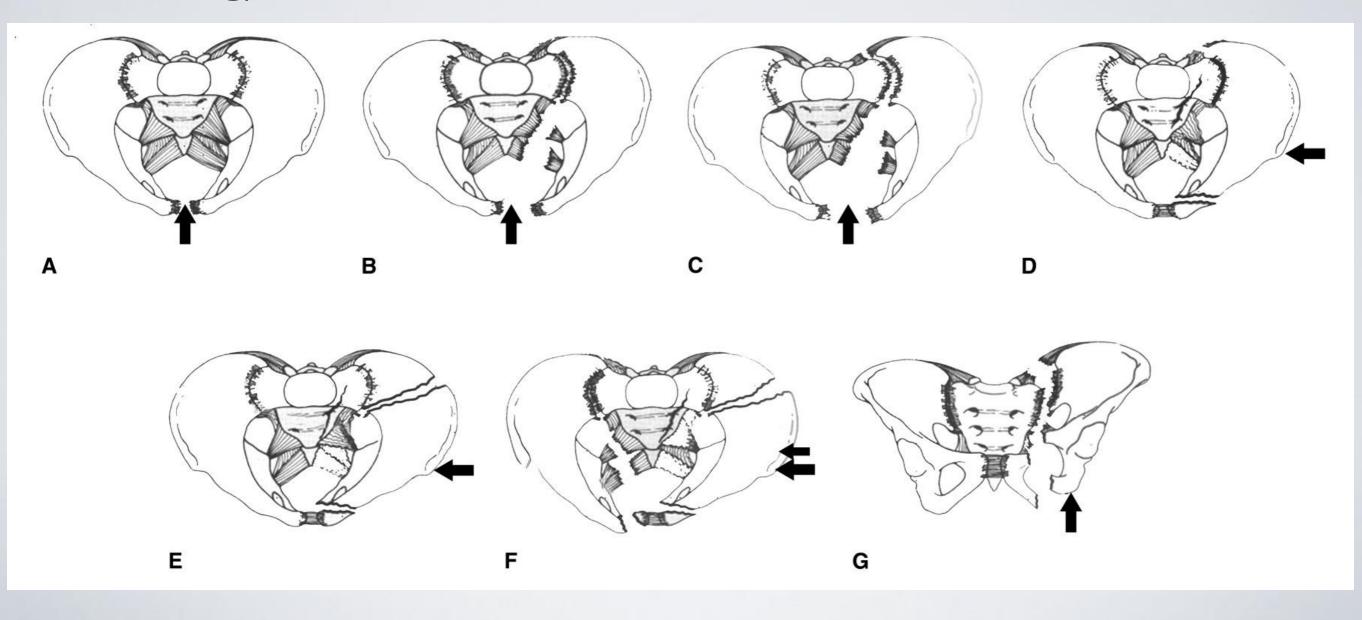

- Open fracture with nerve injury:
 - O Explore, tag nerve ends for later repiar

- Follow up:
 - Clinically
 - Electrodiagnostic assessment start at 6 weeks then serially every 6 weeks
 - If no improvement:
 - O Nerve exploration: neurolysis / repair / grafting
 - O Tendon transfers to preserve function


Nerve injuries Common sites


- Shoulder fracture / dislocation > Axillary nerve
- Distal humeral shaft fracture > Radial nerve
- Elbow fracture / dislocation > Median>>radial>>ulnar
- Hip fracture / dislocation > Sciatic nerve
- Knee fracture / dislocation > Peroneal nerve

In the poly trauma patient


PELVIS ANATOMY

In the poly trauma patient

Pathology

- · Pelvic fractures / instability may cause life threatening bleeding
- · Diagnosing pelvic instability can save lives

- Diagnosis:
 - History: High vs. Low energy trauma
 - Mechanism of injury: Anterior vs. Lateral vs. Axial force
 - Pelvic skin contusion, bruising
 - Short extremity
 - Careful neurologic assessment

- Diagnosis:
 - Primary survey: part of "C"
 - Assess stability by gentle compression on the ASIS
 - Traction on the leg and assess pelvic instability
 - If unstable or painful:
 - O Apply sheet around hips and close the pelvis gently
 - O This results in decreased intra-pelvic volume leading to tamponading the bleeding
 - O Traction on the leg to stabilize vertical instability
 - O This minimizes ongoing vasculature injury and bleeding

- Diagnosis:
 - Rectal exam:
 - Bone fragments (be careful)
 - High riding prostate
 - bleeding
 - Blood at the meatus
 - Labial or scrotal echymosis
 - Vaginal exam

- Management:
 - Stabilize pelvis with binder
 - If vertically unstable apply traction
 - IV resuscitation
 - Look for other injuries
 - Check response

- Management:
 - If partial response, may require angiography for embolization of bleeders
 - May require external fixator and/or pelvic clamp

- Early diagnosis
 - Aggressive resuscitation
 - Coordinated team effort
 - O Save lives

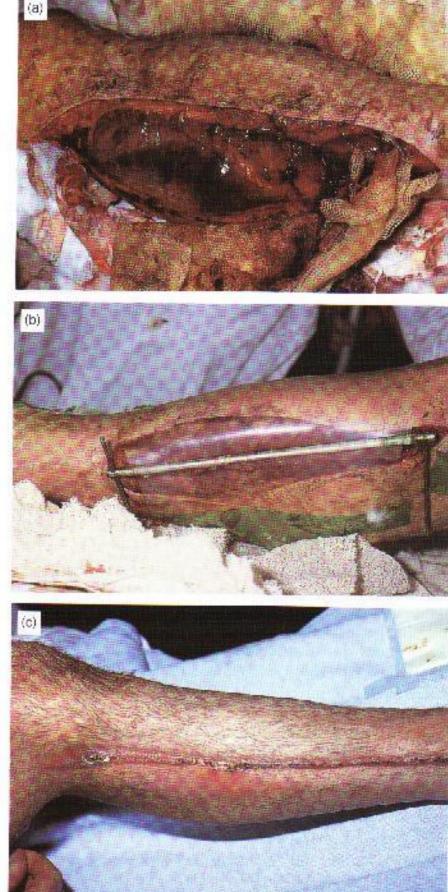


Fig. 23.40 Fasciotomy closure device being used to close a large fasciotomy over a period of 1 week; (a) immediately postfasciotomy; (b) 4 days later; and (c) after healing.