

PRINCIPLES OF FRACTURES (ADULTS)

OBJECTIVES

- Introduction.
- Basic science of fracture healing.
- Principles of evaluating patients with fractures.
- Principles of management.
- Common fractures in adults

introduction

- Fracture means literally broken bone.
- This can be described in different ways:
 - Extent
 - Location
 - Morphology
 - Mechanism
 - Associated soft tissue injuries

• Extent:

 Complete: fracture extends 360° of bone circumference (all around)

• Extent:

- Complete: fracture extends 360° of bone circumference (all around).
- Incomplete: seen almost only in children:
 - Greensick

• Extent:

- Complete: fracture extends 360° of bone circumference (all around).
- Incomplete: seen almost only in children:
 - Greensick
 - Buckle fracture

Location:

- Name of bone
- Side
- Diaphysis, metaphysis or epiphysis
- Long bones (diaphysis): divide them in thirds (proximal, middle or distal third)
- Metaphysis: intra-articular v.s extra-articular

- Morphology:
 - Transverse: loading mode resulting in fracture is tension

- Morphology:
 - Oblique: loading mode is compression.

- Morphology:
 - Spiral: loading mode is torsion.

Morphology:

- Fracture with Butterfly fragment: loading mode is bending.
- It also called a wedge fracture.

- Morphology:
 - Comminuted fracture: 3 or more fragments
 - Segmental fracture

Mechanism:

- High energy vs. low energy.
- Multiple injuries vs. isolated injury.
- Pathological fracture: normal load in presences of weakened bone (tumor, osteoporosis, infection)
- Stress fracture: normal bone subjected to repeated load (military recruits).

- Associated soft tissue injuries:
 - Close fracture: skin integrity is maintained.
 - Open fracture: fracture is exposed to external environment.

Any skin breach in proximity of a fracture is an open fracture until proven otherwise.

QUESTIONS?

FRACTURE HEALING

Natural Bone Healing

- Indirect bone healing (endochondral ossification) occurs in nature with untreated fracture.
- It is called indirect because of formation of cartilage at intermediate stage.
- It runs in 4 stages:
 - Hematoma formation
 - Soft callus formation
 - Hard Callus formation
 - Remodeling

PRINCIPLES OF EVALUATION

Diagnosis: History

 Patients complain of pain and inability to use the limb (if they are conscious and able to communicate)

* What information can help you make the diagnosis?

Diagnosis: History

Onset:

- When and how did the symptoms begin?
- Specific traumatic incident vs. gradual onset?
- If there was a specific trauma, the details of the event are essential information:
 - Mechanism of injury?
 - Circumstances of the event? Work-related?
 - Severity of symptoms at the time of injury and progression after?

Diagnosis: Physical exam

Inspection

- Swelling
- Ecchymosis
- Deformity
- If fracture is open:
 - Bleeding
 - Protruding bone

Diagnosis: Physical exam

Palpation

Bony tenderness

Diagnosis: Physical exam

If a fracture is suspected what should we rule out?

- Neurovascular injury (N/V exam)
- Compartment syndrome
- Associated MSK injuries (examine joint above and below at minimum)

Diagnosis: Imaging

X-rays are 2D: get minimum two orthogonal views!

Include joint above and below injury

Diagnosis: Imaging

- NB: Fractures hurt, immobilization helps.
- * Immobilizing a patient in a backslab is the most effective way to relieve pain from a fracture and may be done BEFORE getting x-rays

Diagnosis: Imaging

Fractures may be obvious on x-ray

Undisplaced or stress fractures are sometimes not immediately apparent

- Secondary signs of fracture on x-ray:
 - Soft tissue swelling
 - Fat pad signs
 - Periosteal reaction
 - Joint effusion
 - Cortical buckle

- Secondary signs of fracture on x-ray:
 - Soft tissue swelling
 - Fat pad signs
 - Periosteal reaction
 - Joint effusion
 - Cortical buckle

- Secondary signs of fracture on x-ray:
 - Soft tissue swelling
 - Fat pad signs
 - Periosteal reaction
 - Joint effusion
 - Cortical buckle

- Secondary signs of fracture on x-ray:
 - Soft tissue swelling
 - Fat pad signs
 - Periosteal reaction
 - Joint effusion
 - Cortical buckle

- Secondary signs of fracture on x-ray:
 - Soft tissue swelling
 - Fat pad signs
 - Periosteal reaction
 - Joint effusion
 - Cortical buckle

How to describe a fracture

Clinical parameters

Radiographic parameters

Clinical Parameters

- Open vs. closed
 - ANY break in the skin in proximity to the fracture site is OPEN until proven otherwise
- Neurovascular status
- Presence of clinical deformity

Location

- Which bone?
- Which part of the bone?
 - Epiphysis -intraarticular?
 - Metaphysis
 - Diaphysis -divide into 1/3s
 - Use anatomic landmarks when possible
 - e.g. medial malleolus, ulnar styloid, etc

Pattern

- Simple vs. comminuted
- Complete vs. incomplete
- Orientation of fracture line
 - Transverse
 - Oblique
 - * Spiral

Displacement

- Displacement is the opposite of apposition
- Position of distal fragment relative to proximal
- Expressed as a percentage

Angulation

- Deviation from normal alignment
- Direction of angulation defined by apex of
- Expressed in degrees

Fracture description: Summary

- Clinical parameters
 - Open vs. Closed
 - Neurovascular status
 - Clinical deformity
- Radiographic parameters
 - Location
 - Pattern
 - Displacement
 - Angulation
 - Shortening

Treatment Principles

- 1. Reduction if necessary.
- 2. Immobilization (definitive or temporary).
- 3. Definitive treatment
- 4. Rehabilitation.

Initial (Reduction)

- IF fracture is displaced.
- Meant to re-align fracture fragments.
- To minimize soft tissue injury.
- Can be consider definitive if fragments' position is accepted.
- Should be followed by immobilization.

Initial (Immobilization)

- To hold reduction in position.
- To provide support to broken limb
- To prevent further damage.
- Control the Pain

Initial (Immobilization)

Definitive

- If satisfactory reduction can not be achieved or held at initial stage.
- Reduction can be attempted close or open (surgery)
- Immobilization can be achieved with:
 - Plate and screws.
 - IM nail
 - EX-fix

Treatment: Principles

- Rehabilitation
 - . Motion as early as possible without jeopardizing maintenance of reduction.
 - . Wt bearing restriction for short period.
 - . Move unaffected areas immediately

Treatment: Principles

Reduce (if necessary)

- to maximize healing potential
- to insure good function after healing

Immobilize

- to relieve pain
- to prevent motion that may interfere with union
- to prevent displacement or angulation of fracture

Rehabilitate

to insure return to function

Multiple Trauma

- Multi-disciplinary approach.
- Run by Trauma Team Leader (TTL) at ER.
 Orthopedic is part of the team.
- Follow trauma Protocol as per your institution.
- Treatment is prioritized toward life threatening conditions then to limb threatening conditions.

Take home points

- Fractures hurt –immobilization relieves pain.
- R/o open fracture, Compartment syndrome and N/V injuries.
- Principles of fracture treatment:
 - Reduce (if necessary)
 - Immobilize
 - * Rehabilitate

QUESTIONS?

THANKS