Bone and Joint Infections

Dr. Marwan Zamzami, ABOS
Associate Professor
Consultant Orthopedic Surgeon

Introduction

- This is an overview
- Initial treatment based on presumed infection
 type clinical findings and symptoms
- Definitive treatment based on final culture
- Glycocalyx
 - exopolysaccharide coating
 - envelops bacteria
 - enhances bacterial adherence to biologic implants

Bone Infection

Bone Infection

- Osteomyelitis
- infection of bone and bone marrow
- Route of infection
 - − direct inoculation → Open fractures
 - blood-borne organisms → hematogenous
- Determination of the offending organism
 - Not a clinical diagnosis
 - Deep culture is essential

Classification

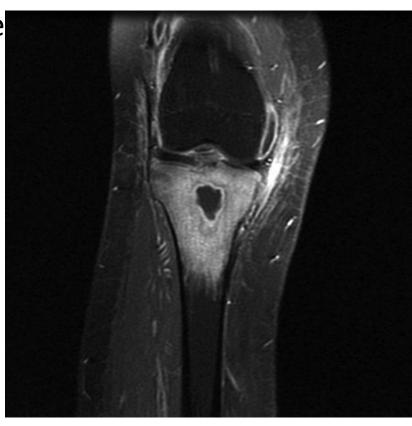
- Acute hemotagenous OM
- Acute OM
- Subacute OM
- Chronic OM

Acute Hematogenous OM Clinical Features

- caused by blood-borne organisms
- More common in children
 - Boys > girls
 - most common in long bone metaphysis or epiphysis
 - Lower extremity >> upper extremity
- Pain
- Loss of function of the involved extremity
- Soft tissue abscess

Acute Hematogenous OM Radiographic Changes

- soft tissue swelling (early)
- bone demineralization (10-14 days)
- sequestra → dead bone
 with surrounding
 granulation tissue → later
- involucrum → periosteal
 new bone → later


Diagnosis

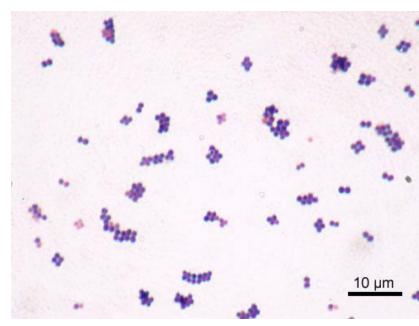
- Diagnosis
 - elevated WBC count
 - elevated ESR
 - blood cultures → may be positive
 - C-reactive protein
 - most sensitive monitor of infection course in children
 - short half-life
 - dissipates in about 1 week after effective treatment
 - Nuclear medicine studies → may help when not sure

Diagnosis

MRI

- shows changes in bone and bone marrow before plain films
- decreased T₁-weighted bone
 marrow signal intensity
- increased postgadolinium fatsuppressed T₁-weighted signal intensity
- increased T₂-weighted signal relative to normal fat

Treatment Outline


- identify the organisms
- select appropriate antibiotics
- deliver antibiotics to the infected site
- halt tissue destruction

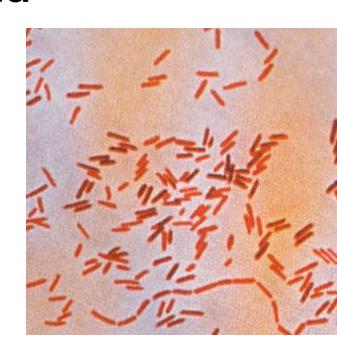
Empirical Treatment

- Before definitive cultures become available
- based on patient's age and other circumstances

Empirical Treatment Newborn (up to 4 months of age)

- The most common organisms
 - Staphylococcus aureus
 - gram-negative bacilli
 - group B streptococcus
- Newborns
 - may be afebrile
 - 70% positive blood cultures
- Primary empirical therapy includes
 - oxacillin plus
 - 3rd -generation cephalosporin

Empirical Treatment Children 4 years of age or older


- most common organisms
 - S. aureus
 - group A streptococcus
 - coliforms → (uncommon)
- empirical treatment →
 - oxacillin or cefazolin
 - If suspecting gram-negative organisms → 3rd generation cephalosporin
- Haemophilus influenzae bone infections → almost completely eliminated → due to vaccination

Empirical Treatment Adults 21 years of age or older

- Organisms
 - most common organism \rightarrow *S. aureus*
 - wide variety of other organisms have been isolated

Empirical Treatment Sickle cell anemia

- Salmonella is a characteristic organism
- The primary treatment →
 fluoroquinolones (only in
 adults)
- alternative treatment → 3rd generation cephalosporin

Empirical Treatment Hemodialysis and IV drug abuser

- Common organisms
 - S. aureus
 - S. epidermidis
 - Pseudomonas aeruginosa
- treatment of choice → penicillinaseresistant synthetic penicillins (PRSPs) + ciprofloxacin
- alternative treatment → vancomycin with ciprofloxacin

Operative Treatment

- started after cultures
- indications for operative intervention
 - drainage of an abscess
 - débridement of infected tissues to prevent further destruction
 - refractory cases that show no improvement after nonoperative treatment

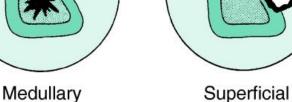
Acute Osteomyelitis

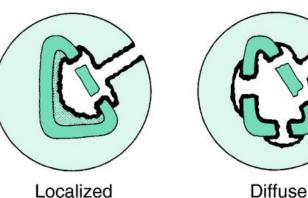
after open fracture or open reduction with internal fixation

Acute osteomyelitis

- Acute OM after open fracture or open reduction with internal fixation
- Clinical findings → similar to acute hematogenous OM
- Treatment
 - radical I&D
 - removal of orthopaedic hardware if necessary
 - rotational or free flaps for open wounds → if needed

Acute osteomyelitis


- Most common offending organisms are
 - S. aureus
 - P. aeruginosa
 - Coliforms
- Empirical therapy → oxacillin + ciprofloxacin


Chronic Osteomyelitis

Chronic OM

- Common in
 - inappropriately treated acute OM
 - trauma
 - immunosuppressed
 - diabetics
 - IV drug abusers
- Anatomical classification → check fig.

Chronic OM

Features

- Skin and soft tissues involvement
- Sinus tract → may occasionally develop squamous cell carcinoma
- Periods of quiescence

 followed by acute exacerbations

Diagnosis

- Nuclear medicine → activity of the disease
- Best test to identify the organisms → Operative sampling of deep specimens from multiple foci

Chronic OM - Treatment

- empirical therapy is not indicated
- IV antibiotics
 must be based on deep cultures
- Most common organisms
 - S. aureus
 - Enterobacteriaceae
 - P. aeruginosa

Chronic OM - Treatment

- surgical débridement
 - complete removal of compromised bone and soft tissue
 - Hardware
 - most important factor
 - almost impossible to eliminate infection without removing implant
 - organisms grow in a glycocalyx (biofilm) → shields them from antibodies and antibiotics
 - bone grafting and soft tissue coverage is often required
 - amputations are still required in certain cases

Subacute Osteomyelitis

Subacute Osteomyelitis

- Diagnosis → Usually
 - painful limp
 - no systemic and often no local signs or symptoms
 - Signs and symptoms on plain radiograph
- May occur in
 - partially treated acute osteomyelitis
 - Occasionally in fracture hematoma
- Frequently normal tests
 - WBC count
 - blood cultures

Subacute Osteomyelitis

- Usually useful tests
 - ESR
 - bone cultures
 - radiographs → Brodie's abscess →
 localized radiolucency seen in long
 bone metaphyses → difficult to
 differentiate from Ewing's sarcoma

Subacute OM - Treatment

- Most commonly involves femur and tibia
- it can cross the physis even in older children

Septic arthritis

Septic Arthritis

- Route of infection
 - hematogenous spread
 - extension of metaphyseal osteomyelitis in children
 - complication of a diagnostic or therapeutic joint procedure
- Most commonly in infants (hip) and children.
- metaphyseal osteomyelitis can lead to septic arthritis in
 - proximal femur → most common in this category
 - proximal humerus
 - radial neck
 - distal fibula

Septic Arthritis

- Adults at risk for septic arthritis are those with
 - $-RA \rightarrow$
 - tuberculosis \rightarrow most characteristic
 - S. aureus most common
 - IV drug abuse → Pseudomonas most characteristic
- Empirical therapy
 - prior to the availability of definitive cultures
 - Based on the patient's age and/or special circumstances

- Newborn (up to 3 months of age)
 - − most common organisms →
 - S. aureus
 - group B streptococcus
 - less common organisms →
 - Enterobacteriaceae
 - Neisseria gonorrhoeae
 - 70% with adjacent bony involvement
 - Blood cultures are commonly positive
 - Initial treatment → PRSP + 3rd -generation cephalosporin

Children (3 months to 14 years of age)

- most common organisms
 - S. aureus
 - Streptococcus pyogenes
 - S. pneumoniae
 - H. influenzae → markedly decreased with vaccination
 - gram-negative bacilli
- Initial treatment → PRSP + 3rd -generation cephalosporin
- alternative treatment
 vancomycin + 3rd -generation cephalosporin

Acute monarticular septic arthritis in adults

- The most common organisms
 - S. aureus
 - Streptococci
 - gram-negative bacilli
- Antibiotic treatment → PRSP + 3rd -generation cephalosporin
- Alternative treatment → PRSP plus ciprofloxacin

Chronic monarticular septic arthritis

- most common organisms
 - Brucella
 - Nocardia
 - Mycobacteria
 - fungi

Polyarticular septic arthritis

- most common organisms
 - Gonococci
 - B. burgdorferi
 - acute rheumatic fever
 - viruses

Septic Arthritis – Surgical treatment

- mainstay of treatment
 - Surgical drainage → open or arthroscopic
 - daily aspiration
- Tuberculosis infections → pannus → similar to that of inflammatory arthritis
- Late sequelae of septic arthritis → soft tissue contractures → may require soft tissue procedures (such as a quadricepsplasty)

Infected Total Joint Arthoplasty

Infected TJA - Prevention

- Perioperative intravenous antibiotics

 most effective method for decreasing its incidence
- Good operative technique
- Laminar flow avoiding obstruction between the air source and the operative wound

Infected TJA - Prevention

- Special "space suits"
- Most patients with TJA do not need prophylactic antibiotics for dental procedures
- Before TKA revision
 knee aspiration is important to rule out infection

Infected TJA - Diagnosis

- Most common pathogen →
 - S. epidermidis → most common with any foreign body
 - S. aureus
 - group B streptococcus
- ESR → most sensitive but not specific
- Culture of the hip aspirate

 sensitive and specific
- CRP may be helpful
- Preoperative skin ulcerations → ↑ risk
- most accurate test → tissue culture

Infected TJA - Treatment

- Acute infections → within 2-3 weeks of arthroplasty → Treatment
 - prosthesis salvage → stable prosthesis
 - Exchange polyethylene components
 - Synovectomy → beneficial
- chronic TJA infections → >3 weeks of arthroplasty
 - Implant and cement removal
 - staged exchange arthroplasty
 - Glycocalyx
 - Formed by polymicrobial organisms
 - Difficult infection control without removing prosthesis and vigorous débridement
 - Helpful steps
 - use of antibiotic-impregnated cement
 - antibiotic spacers/beads

Good luck!