
Common Neomatal Problems

A primer In Neonatal Medicine

Khalid Altirkawi, MD
Consultant Neonatologist
KKUH - KSU

Disclaimer

This presentation is to help medical students upon the start of their rotation in Pediatrics. It is NOT to replace the recommended textbook.

Please provide me with your feedback

at: kaltirkawi@ksu.edu.sa

Objectives

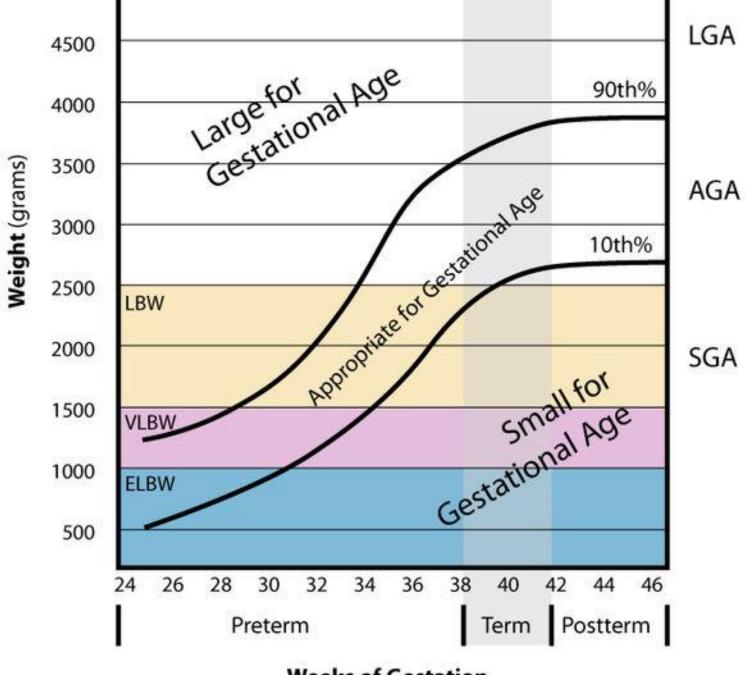
By the end of this presentation the student should:

- Know the uniqueness of neonatal pathophysiology affecting illness presentation
- Know the some of the most common neonatal problems and their management
- Know the impact of prematurity on neonatal health

Introduction

- Gestational age (GA)
 - CGA
 - PCA
 - PMA

- = corrected gestational age
- = post conceptional age
- = post menstrual age


- Chronologic age
 - Postnatal day of life = start at 1 on birthday
 - Postnatal age

- = start at o on birthday

Birthweight

- LBW = low birthweight <2500 g</p>
 - VLBW = very low birthweight <1500 g</p>
- ELBW = extremely low birthweight <1000 g</pre>

Weeks of Gestation

Signs and Symptoms

- Hypothermia
 - Fever

- Cyanosis
- Pallor
- Jaundice
- **Apnea**
- Tachypnea
- Convulsions

- **Jitteriness**
- Irritability
- Lethargy
- Pseudo-paralysis
- Poor feeding
- Vomiting
- Diarrhea
- Abdominal distension

Thermal regulation abnormalities

- Hypothermia:(more common)
 - Sepsis
 - Environmental
- Hyperthermia:
 - Environmental
 - Over clothing
 - Dehydration
 - Infection

yanosis

- Central cyanosis :
 - Respiratory insufficiency
 - CNS depression
 - Cyanotic heart disease

- PPHN
 - Hypoglycemia
 - Sepsis

Peripheral Cyanosis

Pallor

- Anemia
 - Acute hemorrhage
 - Hypoxia
 - Hypoglycemia
 - Shock
 - Adrenal failure
- Sepsis

Convulsions

- Electrolyte abnormalities : Ca, Na.
- Hypoglycemia
- Inborn error of metabolism
- Drug withdrawal
- Pyridoxine deficiency

- Cerebral anomalies
- Cerebral Infarction
- Intracranial hemorrhage
- Birth Asphyxia
- Meningitis
- Familial

Convulsions

- Type of convulsions
 - Subtle, focal or generalized
- Needs to be distinguished from:
 - Jitterness
 - Apnea

Lethargy

- Asphyxia
- Hypoglycemia
- Sedation
- Cerebral defect
- Inborn error of metabolism
- Sepsis

Irritability

- Intra-abdominal conditions
- Meningeal irritation
- Drug withdrawal
- Congenital glaucoma
- Sepsis

Poor Feeding

- Prematurity
- Sick newborn infants:

Jaundice

- First 24 hours:(almost always pathologic)
 - Erythroblastosis fetalis
 - Sepsis
 - CMV
 - Congenital rubella
 - Toxoplasmosis

Jaundice

After 24 hours:

- Physiologic
- Hemolytic anemia
- Inborn Errors of Metabolism (e.g. Galactosemia)
- Hepatitis
- Congenital infections
- Sepsis

Vomiting

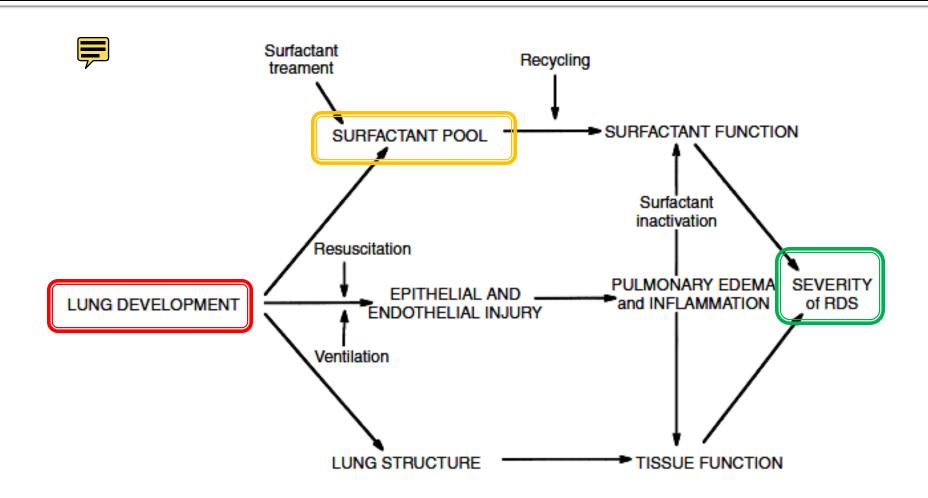
- Gl obstruction
- Pyloric stenosis
- Over-feeding
- Milk allergy
- Increased ICP
- Sepsis

Abdominal Distention

- Gl obstruction
- Abdominal mass
- NEC
- Ileus
 - Hypokalemia
 - Sepsis

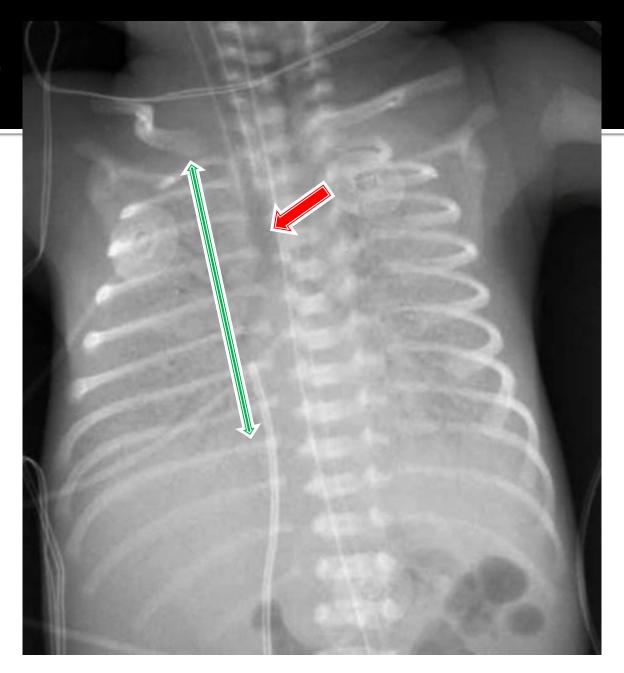
₱Pseudo-paralysis

- Fracture
- Dislocation
- Nerve injury
- Osteomyelitis


Selected Neomatal Disorders

Respiratory Distress Syndrome (RDS)

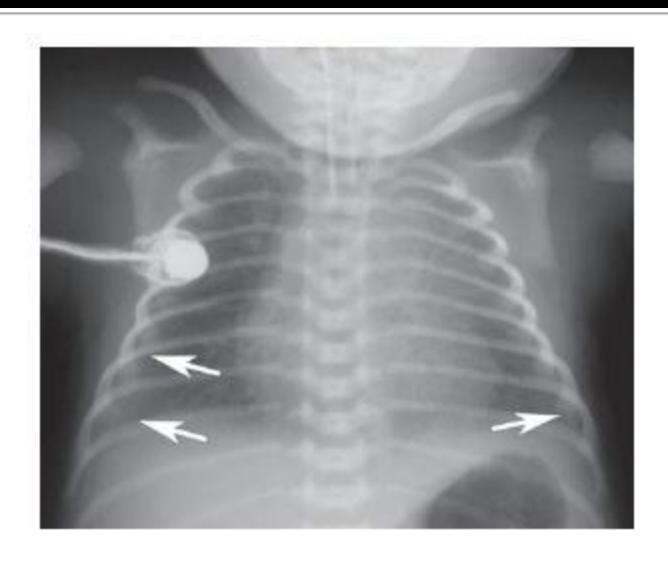
Hyaline membrane disease (HMD)

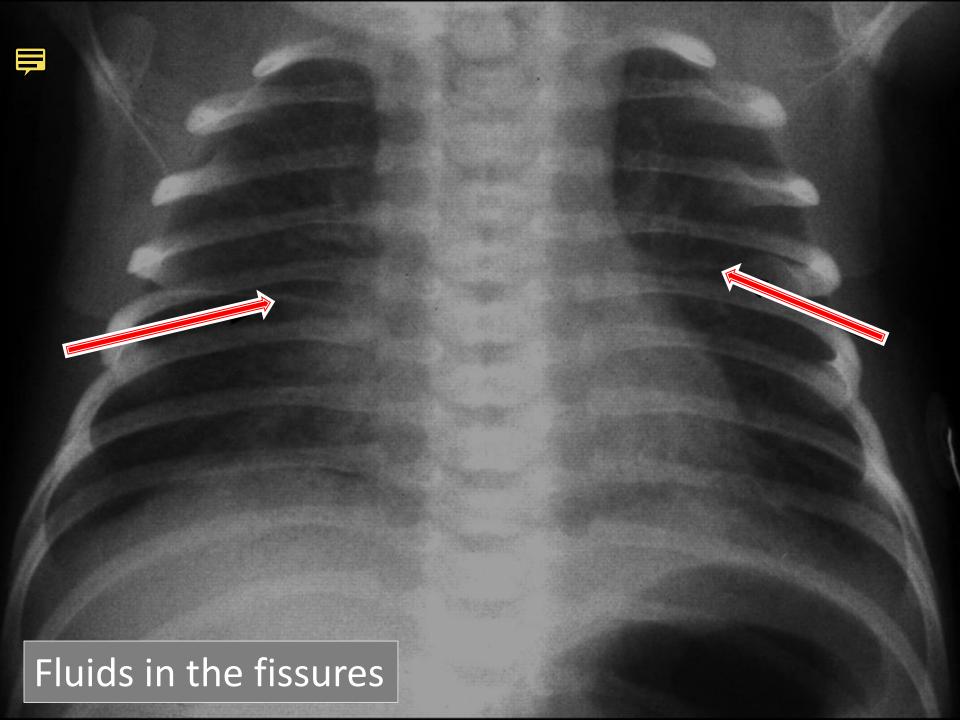

RDS etiology

RDS

- Course: 3-4 days
- Prevention:
 - Antenatal steroids, control of maternal diabetes
- Diagnosis:
- Clinical signs: Cyanosis and Distress (Grunting, Retractions, Nasal flaring)
- Radiographic signs: Ground-glass opacities, Air bronchogram, Low lung volumes

RDS

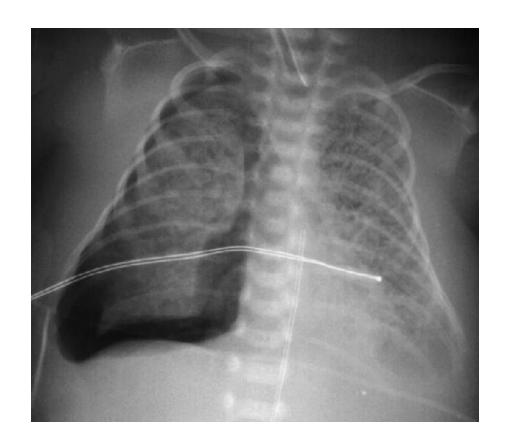

RDS management

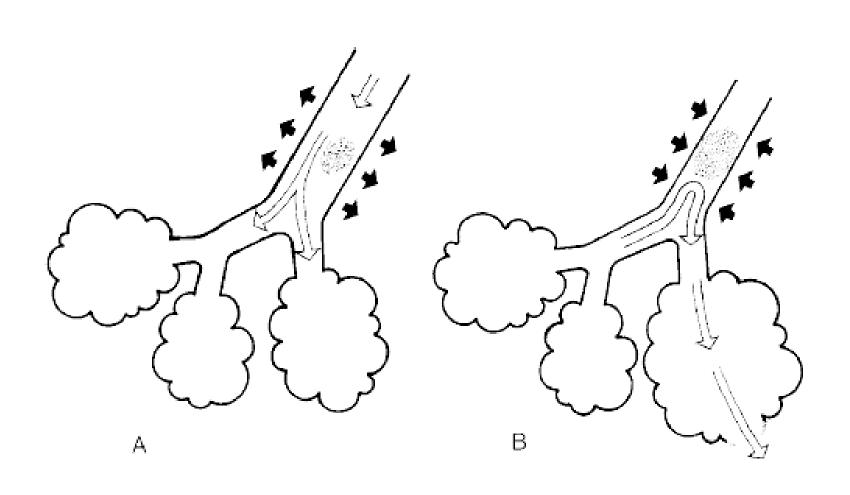


- Exogenous intratracheal surfactant
 - Lowers surface tension at air-fluid interface
 - Within minutes, improved oxygenation and increased FRC at lower airway pressures
 - Single treatment is enough for most newborns because type II pneumocytes recycle surfactant
 - Second dose may be needed in >6 hours if surfactant inhibition occurs (e.g. in MAS)

GBS pneumonia

Meconium Aspiration Syndrome

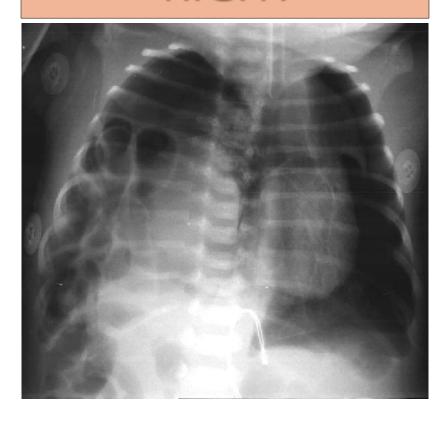


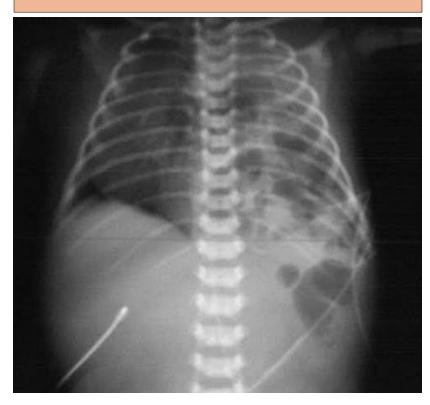

Pneumothorax

- Aymptomatic
 (1-2% of all newborn)
- Spontaneous vs. secondary
- Clinical manifestations
- Diagnosis
- Management

One-way valve Mechanism

Diaphragmatic Herina


Diaphragmatic Hernia


- Congenital vs. acquired
- Most often left, and through the posterlateral segment of diaphragm.
- Respiratory Distress (usually severe), cyanosis, bradycardia, scaphoid abdomen
 - Diagnosis: signs and imaging
- Management : stabilization then surgery

Diaphragmatic Hernia

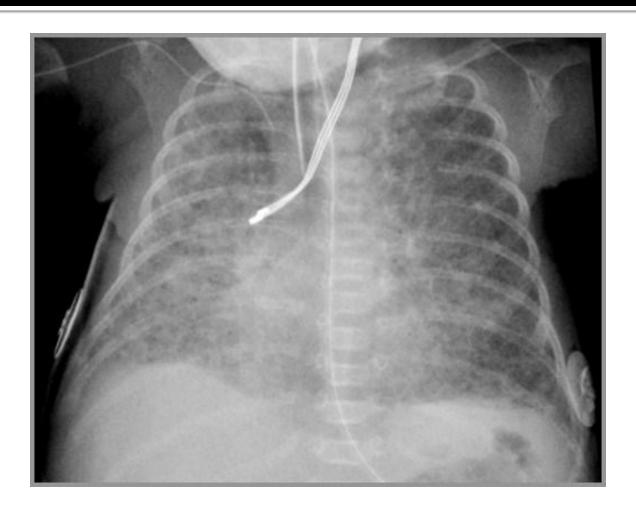
RIGHT



LEFT

Broncho-pulmonary Dysplasia (BPD)

Chronic lung disease (CLD)



BPD

- Lung injury due to:
 - Barototrauma
 - Volutrauma
 - Oxygen toxicity
- Defined by the need for oxygen therapy or respiratory support at 36 weeks postmenstrual age (PMA)
- Management options ???

BPD

Apnea of prematurity (AOP)

AOP

- Cessation of respiration for 20 seconds, or for 15 seconds associated with cyanosis, pallor or bradycardia
- Respiratory drive in preterm infants is
 - Less developed in response to hypercarbia
 - Transiently increased then decreased by hypoxia
- Preterm infants are at 3-4 increased risk of SIDS than term infants

AOP

- More common during sleep
- Uncommon if birth after 34 weeks of gestation
- May persist in VLBW infants until 44 weeks postmenstrual age.
- May recur following general anesthesia (GA):
 - Preterm < 44 weeks PMA who receive GA requires 24 hour monitoring

Types of AOP

- Central apnea
 - Lack of respiratory drive and effort, Typically brief
- Obstructive apnea
 - Presence of central drive and respiratory efforts
 - Cessation of respiratory airflow due to airway obstruction
- Mixed apnea
 - Central apnea in response to hypoxia of obstructive apnea
 - Most common, Can be quite prolonged

Identifiable Causes of Apnea

Not all apnea in the preterm is due to AOP

- Prematurity/immaturity
- Hypoglycemia
- Drugs
- Seizures
- CNS injury
- Sepsis!!!

Treatment of severe AOP

- Methylxanthine drugs (e.g. Caffeine)
 - Central stimulation
- Nasal CPAP
 - Splints upper airway obstruction
 - Maintains FRC → stabilized oxygenation
- Low flow nasal oxygen
 - Stabilizes oxygenation

Be careful not to hyper-oxygenate!

Periodic breathing

- Recurrent sequences of pauses in respiration lasting 5 to 10 seconds followed by 10-15 seconds of rapid respiration
- Evaluation and Treatment are NOTindicated

Patent Ductus Arteriosus (PDA)

- Persistence of fetal ductus arteriosus
 - Blood flow determined by relative pressures
 - Volume overload once pulmonary vascular resistance decreases

PDA

Diagnosis:

- Clinical Signs:
 - Continuous murmur:
 - Best heard at upper left sternal border
 - Diastolic component is difficult to hear
 - Decreased systemic diastolic blood pressure
 - "bounding" pulse
 - Increased O2 and ventilatory requirements
- Echocardiography is the gold standard

PDA

Treatment:

- Symptomatic
 - Indomethacin if < 14 (to 28) days chronologic age
 - Surgical ligation if two courses of Indomethacin were unsuccessful or contraindicated
- Asymptomatic
 - closure after 6 months
 - Coil embolization or
 - Video-assisted thoracoscopic surgery (VATS)

Intra-ventricular hemorrhage (IVH)

and

Peri-ventricular hemorrhagic infarction (PVHI)

IVH & PVHI

- **■** Grade I (Mild)
- **₱** Grade II (Moderate)

Grade III (Severe)

■ Grade IV

Germinal matrix bleeding

IVH filling 10-50% of the ventricles

ventricles >50% filled with blood, typically distending ventricle

Periventricular hemorrhagic infarction

Grade I

Grade II

Grade III

Grade IV

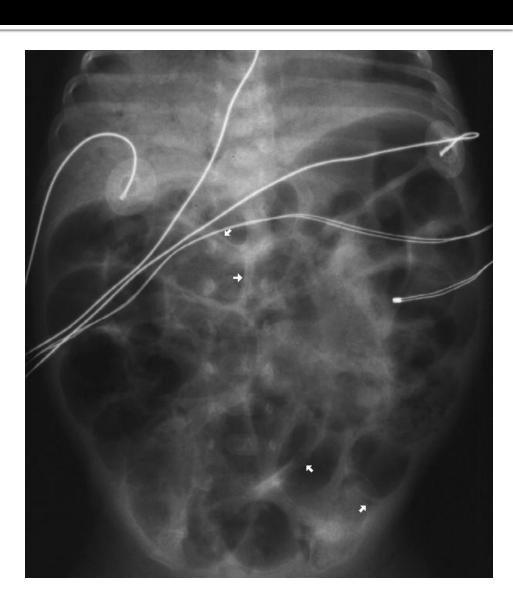
Necrotizing Enterocolitis (NEC)

NEC

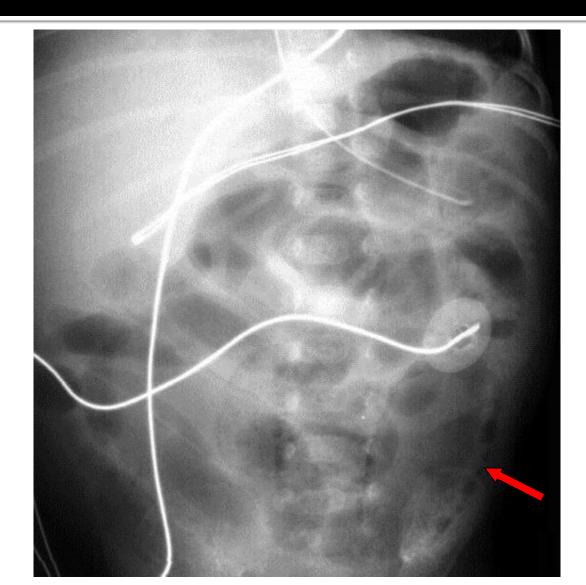
- Acute multifactorial intestinal necrosis syndrome
 - Ischemia
 - Infection and Inflammation
 - Poor host protective responses

Clinical Presentation

SYSTEMIC SIGNS

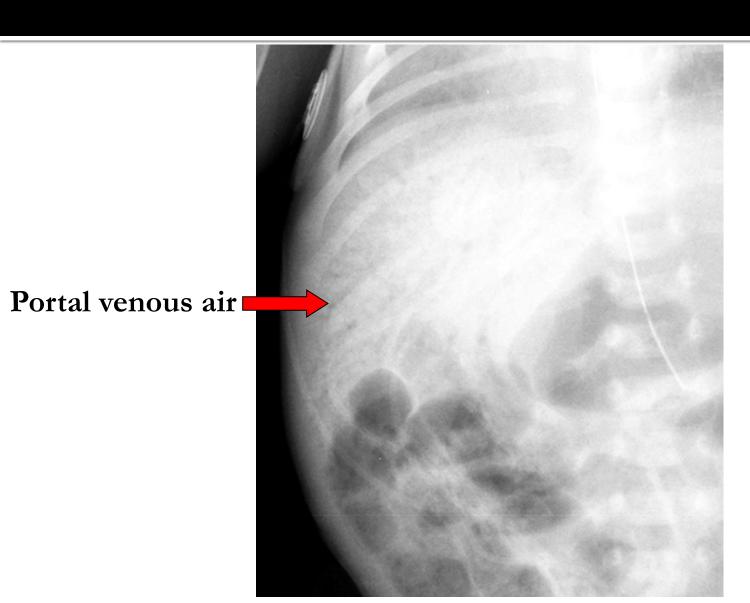

- Respiratory distress or apnea
- Lethargy
- Temperature instability
- Irritability or poor feeding
- Shock
- Acidosis
- Oliguria
- Bleeding

ABDOMINAL SIGNS

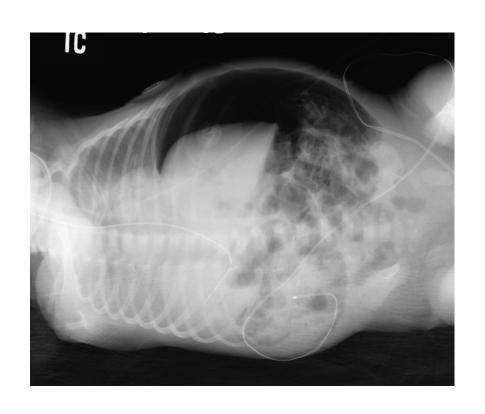

- Distention
- Tenderness
- Feeding residuals/Ileus
- Emesis
- Abdominal wall erythema
- Persistent localized abdominal mass
- Ascites
- Bloody stools

Radiographic features

- Ileus
- Bowel wall edema
- Fixed-position loop
- Pneumatosis (arrows) or portal venous air
 - Pneumoperitoneum



Pneumatosis intestinalis



Portal Venous Air

Pneumoperitoneum

In decubitus position, air rises to space between liver and body wall

Hypodensity of peritoneal cavity due to anterior air

NEC Evaluation

- CBC, Blood gas every 6-8 hrs until stable
- AP and decub KUB every 6-8 hrs until stable

Management

Medical treatment

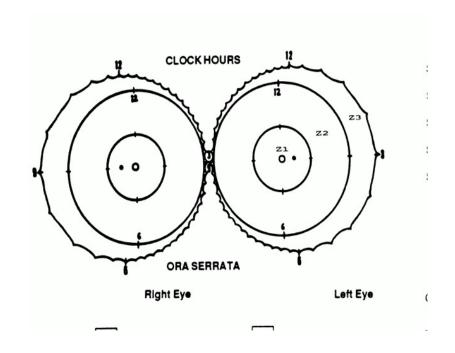

- NPO for 7-10 days after normal KUB
- Antibiotics
 - (Ampicillin, Gentamicin) for 14 days
 - Clindamycin or Flagyl if actual or impending perforation

Surgical Management

- Indications for surgical intervention:
 - Worsening clinical picture despite medical management
 - Persistent fixed loop on KUB
 - Abdominal mass
 - GI perforation
 - Signs of full thickness necrosis
 - Peritonitis: Ascites, Abdominal wall erythema
 - Persistent thrombocytopenia
 - Refractory metabolic acidosis

Retinopathy of prematurity (ROP)

formerly known as Retrolental Fibroplasia (RLF)


ROP

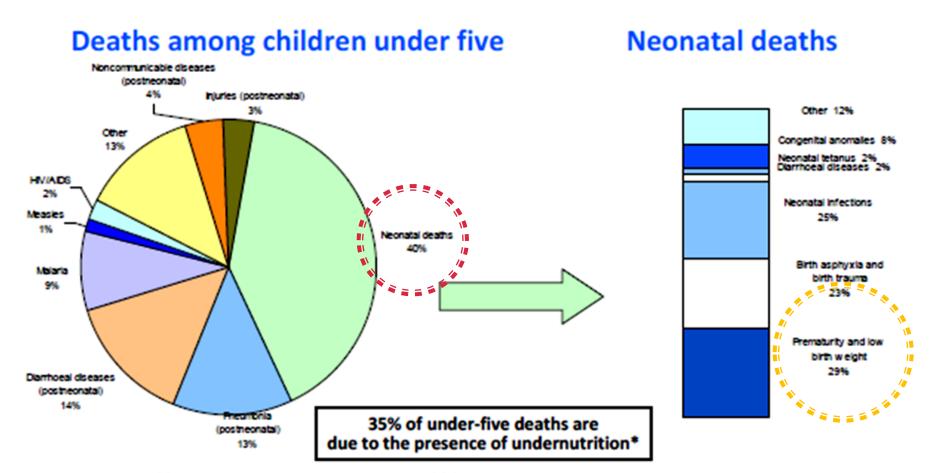
- Develops only in incompletely vascularized retinas of premature infants
- Correlated with illness and hyperoxia
 - Acidosis, Hypothermia, Shock, and Asphyxia arrest vessel growth
- Abnormal growth in recovery phase results in "pile up" of vessels
 - Ridge without forward growth
 - Peaks ~40 weeks PMA

International Classification of ROP (ICROP)

- Zones (I, II, III)
- Stages:
 - I = line of demarcation
 - II = elevated ridge of vessels
 - III = extraretinal neovascularization (ERNV) into vitreous
 - IV = partial retinal detachment
 - V = complete retinal detachment
- Plus disease
 - Inflammation and vessels engorgement
 - Higher risk of scarring and retinal detachment

ROP Screening

- Dilated retinal exam at ≥31 weeks PMA (or 4 weeks chronologic age if born after 27 weeks of gestation)
- Whom to screen?
 - Who were born prior to 31 weeks of gestation <u>OR</u>
 - Who were born prior to 33 weeks of gestation <u>AND</u> had unstable course


ROP Treatment

- Indications
 - Zone 1 any plus disease
 - Zone 1 stage III disease
 - Zone 2 stage II or III and plus disease
- Laser ablation of peripheral retina
- Intravitreal bevacizumab (anti-VEGF agents)

Finally! The cost of prematurity

Major causes of death in neonates and children under five – WHO 2008

Sources: (1) WHO. The World Health Statistics 2011; (2) *For undernutrition: Black et al. Lancet, 2008

Neonatal Mortality Associated with Prematurity, USA, 2005

Gestational Age	% Survival if admitted to NICU			
23	38-66			
24	43-81			
25	85-92			
26	86-93			
27-32	86-98			

Neonatal Mortality Associated with Prematurity

Table III. Mortality rates by major group, epoch, and gestational cohort

	Cohort	Live births	hs Rate of death/1000 live born infants at that gestation (95% CI)					
Epoch	(weeks gestational age)		Respiratory	Malformation	Other	Infection	NEC	
1988-1994	24-27	991 (415)	319 (283-354)	10.09 (3.84-16.34)	55.5 (40.83-70.16)	19.17 (10.55-27.79)	15.14 (7.48-22.79)	
	28-31	2412 (256)	48.51 (39-57.29)	15.34 (10.39-20.28)	26.95 (20.42-33.53)	11.19 (6.98-15.43)	4.15 (1.58-6.72)	
	Total	3403 (671)	127 (115-139)	13.81 (9.87-17.77)	35.26 (28.97-41.59)	13.52 (9.62-17.43)	7.35 (4.47-10.23)	
1995-2001	24-27	821 (305)	291 (254-328)*	7.31 (1.46-13.18)	31.67 (19.53-43.91)*	17.05 (8.14-26.02)	24.36 (13.71-35.08)	
	28-31	1997 (168)	26.54 (19.4-33.7)*	14.52 (14.22-19.77)	29.04 (21.55-36.45)	8.01 (4.08-12.92)	6.01 (2.60-9.39)	
	Total	2818 (473)	104 (91.8-116)	12.42 (8.31-16.54)	29.81 (23.45-36.19)	10.65 (6.84-14.46)	11.36 (7.43 - 15.29)	
2002-2008	24-27	782 (360)	194 (163-225)*	16.62 (7.59-26.45)*	38.36 (24.67-52.13)	31.97 (19.46-44.54)*	39.64 (25.71-53.64)*	
	28-31	1897 (109)	12.65 (7.59-17.71)*	17.92 (11.89-23.94)	15.81 (10.21-21.59)	5.79 (2.37-9.22)	5.27 (2.02-8.58)	
l	Total	2679 (360)	65.7 (55.99-75.41)*	17.54 (12.52-22.54)	22.39 (16.72-28.04)	13.44 (9.04-17.81)	15.3 (10.61-19.97)	

THAM YOU

