Common Parathyroid Disorders in Children

Dr Sarar Mohamed

FRCPCH (UK), MRCP (UK), CCST (Ire), CPT (Ire), DCH (Ire), MD Consultant Paediatric Endocrinologist & Metabolic Physician

Assistant Professor of Pediatrics

King Saud University

- Calcium homeostasis
- Causes of hypocalcaemia
- Rickets
- hypercalcaemia

Key-players of calcium metabolism

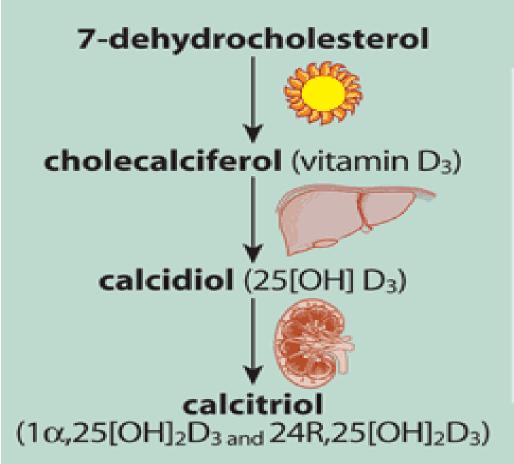
- Calcium & Phosphates
- Parathyroid hormone (PTH).
- Cholecalciferol (Vit.D3) and Calcitriol
- Estrogen and other Sex hormones.
- Calcitonin.

PARATHYROID HORMONE

Function of PTH

1-raises the level of calcium in the blood2-decreases levels of blood phosphate.3-Partially antagonistic to calcitonin

PARATHYROID HORMONE


- Secreation stimulated by fall in serum Ca.
- mobilize calcium from bone
- Increases renal reabsorption of ca
- decreases renal clearance of calcium
- Increase calcium absorption intestine

Calcium homeostasis

Vitamin D

- Fat soluble 'vitamin'
- Synthesised in skin
- Food sources include fish oils

Vitamin D Metabolism

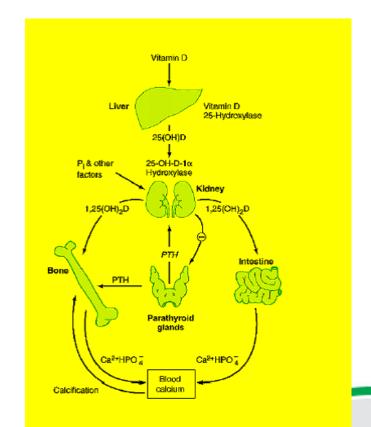
Effects of Calcitriol

Intestines

- Increased calcium absorption
- Increased phosphorus absorption
- Decreased magnesium absorption

Parathyroid gland

- Increased mineralization indirectly via increased calcium absorption in intestinal lumen
- At high doses, increased osteoclastic bone

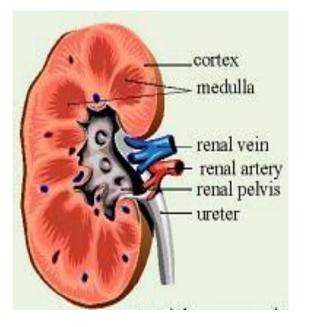

Kidneys

 Autoregulation of calcitriol production

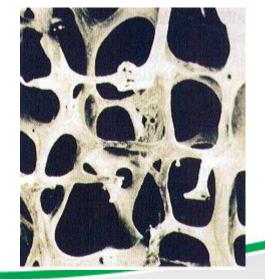
Years of research have led to an in-depth understanding of the metabolism of vitamin D. But the moniker of "vitamin" is not correct in the classic sense. In reality, vitamin D is a prohormone that has many effects. The active hormone is $1,25(OH)_2D_3$

It increases absorption of calcium from gut.

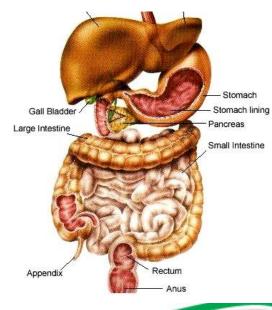
It increases reabsorption of ca from kidney.



- It is a calcium lowering hormone
- Secreted by Thyroid C cells



Target Organs


Kidney

Bone

G.I.Tract

1. Too little parathyroid hormone – hypoparahypothyroidism causes low serum calcium and high phosphate

2. Too much parathyroid hormone– hyperparahyperthyroidism causes high calcium and low phosphate

Calcium profile

- To diagnose a metabolic bone disease
 - calcium
 - Phosphate
 - Alkaline phosphatase
 - Parathyroid hormone
 - Vitamin D
 - Urinary calcium and phospherus

Causes of hypocalcaemia

- Rickets
- Hypopararthyroidism
- Psuedohypopararthyroidism
- Familial hypocalcaemia
- Renal failure
- Drugs: phenytoin
- Maternal diabetes
- Premarurity
- DiGoerge syndrome

Reduced
 mineralization

of bone matrix due to calcium deficiency.

rickets results when the osteoid does not have mineral.

Calcium deficiency/Vit D deficiency

Deficiency of Vit. D

- Dietary lack of the vitamin
- Insufficient ultraviolet skin exposure
- Malabsorption of fats and fat-soluble vitamins- A, D, E, & K.
- Abnormal metabolism of vitamin D chronic renal failure.

Rickets: Non renal causes –

- Nutritional
- Intestinal malabsorption
- Hepatobiliary
- Metabolic anticonvulsant therapy
- Rickets of prematurity

Renal causes

Renal osteodystrophy:CRF
Familial hypophosphataemic rickets
Renal tubular acidosis
Fanconi syndrome

Primary
Secondary - cystinosis, wilsons disease,lowe
syndrome,tyrosinemia

Vitamin D dependent type 1 rickets
Vitamin D dependent type 2 rickets

Rickets:Effect at growth end plate

- Inadequate growth plate mineralization.
- Defective calcification in the interstitial regions
- The growth plate increases in thickness.
- The columns of cartilage cells are disorganized.

Rickets

Cupping of the epiphyses.

Bones incapable of withstanding mechanical stresses and lead to bowing deformities.

 Eventual length of the long bones is diminished. (short stature)

• VITAMIN D DEFICIENCY RICKETS – 6 to 18 months.

NON NUTRITIONAL RICKETS
 Beyond this age

group.

Skeletal manifestations of Rickets

- Craniotaes
- Delayed closure of anterior fontanelle
- Frontal and parietal bossing
- Delayed eruption of primary teeth
- Rosary

EXTREMITIES –

Enlargement of long bones around wrists and ankles

Bow legs, knock knees green stick fractures

Extra – skeletal manifestations

SEIZURES AND TETANY -

Secondary to hypocalcaemia

HYPOTONIA AND DELAYED MOTOR DEVELOPMENT

In rickets developing during infancy.

Investigations,

BASIC INVESTIGATIONS TO CONFIRM RICKETS

- Low or normal serum Ca
- Low phospherus
- High alkaline phosphatase
- X rays of ends of long bones at knees or wrists
 - Shows Widening, fraying, cupping of the distal ends of shaft.
- Vit D level low
- Parathyroid hormone high

Rickets

Radiology changes

Vitamin D Resistant Rickets

- In the renal tubular disorders, rickets develops in the presence of normal intestinal function and are not cured by normal doses of vitamin D.
- Resistant or refractory rickets.

Defective final conversion of Vit. D in to active form or End organ insensitivity.

Treatment of Rickets

- Vitamin D supplement
- Type and dose depens on underline cause of Rickets

Causes of hypercalcaemia

- Hyperparathyroidism
- Vitamin D intoxicity
- William syndrome
- Familial hypocalcuric hypercalcaemia
- malignancy