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Abstract The purpose of this study is to provide Saudi Arabian population reference
growth standards for height, weight, body mass index (BMI), head circumference
and weight for length/stature. The estimated distribution centiles are obtained by
splitting the population into two separate age groups: infants, birth to 36 months and
children and adolescents, age 2 to 19 years. The reference values were derived from
cross-sectional data applying the LMS method of Cole and Green (Stat. in Medicine
1992; 11:1305-1319) using the Imsgreg package in R (public domain language for
data analysis, 2009). The report provides an overview of how the method has been
applied, more specifically how the relevant issues concerning the construction of the
growth charts have been addressed and is illustrated by just using the girls weight
data (birth to three years old). These issues include identifying the outliers, diag-
nosing the appropriate amounts of smoothing and averaging the reference standards
for the overlapping 2 to 3 year age range. The use of ANCOVA has been introduced
and illustrated as a tool for making growth standard comparisons between different
geographical regions and between genders.
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1 Introduction

The growth standards are derived from a cross sectional sample of healthy children
and adolescents aged from birth to 19 years. The sample was randomly selected
by a stratified multistage probability sampling procedure from each of the 13 ad-
ministrative regions of the Kingdom of Saudi Arabia, ensuring both national and
urban/rural representation. The anthropometric data comprises 51,485 observations
of which 25,987 are made on boys and 25,498 on girls. Those measurements in-
clude: length, for the children 2 years of age and below, height, for children above
2 years of age, weight and head circumference. All possible efforts have been made
to ensure reliability and the accuracy of the measurements.

The reference growth charts we have constructed describe the dependance of
height, weight, boy mass index (BMI) and head circumference on age, and weight
on length/stature for two age ranges, birth to 36 months and 2 to 19 years. They were
constructed using the LMS (Lamda-Mu-Sigma) method of Cole and Green [8] in R,
a public domain language for data analysis (R Development Core Team (2009)).
The LMS method provides a way of obtaining growth standards for healthy indi-
viduals and is based on normalizing the conditional distribution of a measure using
the power transformation of Box and Cox [1]. The package 1msqgreg developed
by Carey [2] implements the LMS method in R. Use of the LMS method was a
requirement of the study.

In this paper we discuss various issues involved in using the LMS methodol-
ogy, all of which are specifically illustrated using the Saudi girls weight data for
those from birth to three years old. Section 2 focusses on identifying and remov-
ing extreme outliers prior to estimating the centile curves. In Section 3 we describe
the model and how it is fitted to the data. Goodness-of-fit is considered in Section
4 while in Section 5 we describe a simple solution to obtaining a common set of
centiles in the overlapping 2-3 years age-range. In Section 6 we propose using AN-
COVA to investigate differences in growth patterns in different geographical regions
and also between the sexes. This proves to be a much more informative approach
than that described in the literature which does not take age into account. Finally,
we add some discussion and further suggestions.

2 Outliers

An Outlier is a sample value that lies outside the main pattern or distribution of
the data and in the context of quantile regression, which was first introduced by
Koenker and Basset [14], it will be one which has a much larger or smaller response
value at a given age when compared with other responses at a similar age. Quantile
regression measures the effect of covariates not only in the center of the distribution
but also in the upper and lower tails. Extremely low and extremely upper quantiles
are of interest regarding growth charts and therefore it is important to deal with the
issue of removing the potential outliers with a cautiousness.
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The outlier should not be regarded as a pejorative term; outliers may be cor-
rect, but they should be checked for transcription error [18]. The quantile regression
model is a natural extension of the linear regression model. If an outlier is included
in the data which is used to estimate the quantiles then it may be highly influen-
tial on the fitted regression line in that the line may be pulled in a disproportionate
manner towards the outlying value or it may cause a failure in the algorithm used to
estimate the quantiles [14]. This latter point is particularly true with respect to the
LMS procedure, as according to Carroll [4] the choice of the transformation L(x) is
highly sensitive to outliers in the data. We have also found that if the outliers are not
removed it can result in the numerical failure of the model fitting algorithm in the
function 1msgreg.

The lack of a methodology to assess the direct effect of an individual observation
on the LMS methodology has prompted us to approximate the LMS model using
a cubic regression line to model the relationship between a response and covariate
(such as weight and age). Approximating the LMS model in this way enables us to
identify the outliers in that space with respect to this mode, that hopefully are also
the outliers with respect to the LMS model. To fit this cubic regression line we have
used a robust regression procedure.

Robust regression deals with cases that have very high leverage, and cases that
are outliers. Robust regression represents a compromise between the efficiency of
the ordinary least squares (OLS) estimators and the resistance of the least absolute
value (LAV) estimators, both of which can be seen as special cases of M-estimation
[13].Itis a form of weighted least squares regression, which is similar to least square
in that it uses the same minimization of the sum of the squared residuals, but it is
done iteratively. Based on the residuals a new set of weights are determined at each
step. In general, the larger the residuals, the smaller the weights. So the weights
depend on the residuals. At the same time, the residuals depend on the model and
the model depends on the weights. This generates an iterative process and it goes
on until the change in the parameter estimates are below a preset threshold. At the
end, instead of all points being weighted equally, the weights vary and those with
the largest weights contribute more to the fit.

There are a few types of weighting schemes, M-estimetors, that can be imple-
mented [18]. In Huber’s [13] weighting, observations with small residuals get a
weight of 1, the larger the residual, the smaller the weight. M-estimetion, intro-
duced by Huber (1964) can be regarded as a generalisation of maximum-likeliood
estimation (MLE), hence the term ’M’-estimetion [10].

Consider the linear model

vi=xB+e& i=1,...,n (1)
where the V(g;) = 62 and Cov(g;, €;) = 0,i # j. If & has density f, we can define

p = —logf, where the function p_gives the contribution of each residual to the
objective function. Then the MLE § = b solves

rrgnz—logf(Yi—Hi) fognzp(yl'—#i) @
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where ; = x;B and so [l = xb.

Let y = p be the derivative of p. Then we will have ¥, v (y; — ﬁi)x; =0or
Yiwi (vi— ﬂi)x; = 0 where the weight w; = y (y; — {;) / (v; — {1;). This suggests an
iterative method of solution, updating the weights at each iteration [18].

If p (x) = x?, the solution is the conditional mean and the median is p (x) = |x|.
The function

—cx< —c
v (x) = xxl<e 3)
cx>c

is known as Winsorizing and brings in extreme observations to t & c¢. The corre-
sponding function p = —log f is

2

p(x)z{x if x| <c )

¢ (2]x| — ¢) otherwise

and equivalent to a density with a Gaussian centre and double-exponential tails. This
estimator is due to Huber. Note that its limit as ¢ — 0 is the median, and as ¢ — o
the limit is the mean. The value ¢ =1.345 gives 95% efficiency at the normal [18].
Venables and Ripley’s MASS package [17] introduces the r1m function for fit-
ting a linear model by iterated re-weighted least squares (IWLS) regression using
Huber’s M-estimator with tuning parameter ¢ =1.345 and also incorporating a ro-
bust estimate of the scale parameter ¢, where & = s. The details are; if we assume
a scaled pdf f(e/o) /o for € and set p = —log f, in this case the MLE minimizes

min Zp (M-H:) +nlogo )
B |5 o
Assuming that ¢ is known and if y = p,, the the MLE b of 8 solves

. Yi— Ui
o (25)

A common way to solve the above equation is by IWLS, with weights

Wi:W()’i;.”i)/()’i;.“i) %

Of course, in practice the scale o is not known. However, as mentioned above o is
estimated by a robust MLE-type estimate denoted by s.

A cubic polynomial using the r1m function in R has been fitted to the log-
transformed data (in a bid to stabilize the variance over age) using MM-estimation
that combines the resistance and robustness, whilst gaining the efficiency of M-
estimation.
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> library (MASS)
> mp<-rlm(log(weight) "1+agey+I (agey”2)+I (agey”~3), method="MM")
> summary (mp)

Call: rlm(formula = log(weight) =~ 1 + agey + I(agey”2) +
I(agey”3), method = "MM")
Residuals:
Min 10 Median 30 Max

-0.784423 -0.098632 -0.001707 0.096245 0.708137

Coefficients:

Value Std. Error t value
(Intercept) 1.1731 0.0034 342.0763
agey 2.0866 0.0148 140.8422
I(agey~2) -1.1875 0.0145 -81.6688
I(agey”3) 0.2223 0.0036 61.0781

Residual standard error: 0.144 on 6123 degrees of freedom

After fitting this cubic line we have used the weights produced in a robust regres-
sion procedure to identify the most extreme values. The observations with the big
residuals are down weighted, which reflects that they are atypical from the rest of
the observations when it comes to fitting such a model. Observations with 0 weight
(w; = 0) are deemed to be extreme and so are then removed from the data before
running the LMS model fitting algorithm (Figures 1 and 2). Please note that weight
referred to in the Figure 1 corresponds to girls actual body weight.

806 R Data Editor (=)
& EE . =
| row.names weight agey W
|811 15.7 0.6 0 B
{1235 2.5 0.2617 0 0
2240 4.8 1.21 0
5963 30.2 2.96 0
1149 11 0.33 0.002548397
| 1903 6.8 2.7819 0.00273806
3250 20 1.86 0.02485549
t4170 8 0.15 0.02486067
1201 9.8 0.3 0.06277497
1305 8.4 0.2 0.06360398
3454 14 0.65 0.1121188
86 18.5 1.97 0.1242005
|4131 3 0.259 0.1309751
3595 7 0.1206 0.1326621
5740 6 1.0648 0.1556946 .
5392 10 0.36 0.1615647

Fig. 1 Identifying the outliers, Girls Weight, age birth to 36 months
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Girls weight birth to 36 months of age

20 25 30
I I I
@

weight (kg)

15
I
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Fig. 2 Identified outliers, Girls Weight, age birth to 36 months

The World Health Organisation (WHO) has defined limits for acceptable data
based on 1977NCHS/WHO growth charts and recommends that the exclusion range
for weight-for-age should be |z| > 5 [5]. After the final LMS model for girls weight
(age birth to three) was fitted, we used the zscores function from the 1msgreg
package in R to calculate z-scores for the four identified outliers and these are given
in Table 1. Each omitted case has an |z| greater than 5 tying in with the WHO
guideline.

z-scores {lmsgreg}

row.names weight age z-score
811 15.7 0.6 5.22488
1235 2.5 0.2617 -6.70038
2240 4.8 1.21  -5.29738
5963 302 296  6.49793

Table 1 z-scores of the four identified outliers for girls weight, age birth to 36 months
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3 LMS

Under the assumption of normality, growth curves can be constructed by estimat-
ing the age specific mean and standard deviation, say t(¢) and o (), so that chosen
quantile curve for a € [0, 1] can then be obtained as

O(a|r) = fi(t) +6(r) @~ () (8)

where @~ !(a) denotes the inverse of the standard normal distribution function.
Providing that assumption of normality holds at each age, such a curve should split
the population into two parts with the proportion & lying below the curve, and the
proportion of 1 — ¢ above the obtained curve [19].

Although adult heights in a reasonably homogeneous population are known to
be quite close to normal, in general anthropometric data are known to be not nor-
mally distributed [19]. Anthropometry tends to be right skew rather than left skew,
which is why a log transformation which treats the two tails of the distribution dif-
ferently is often suggested as a means of obtaining a symmetric distribution [7]. A
log transformation can be viewed as a particular power transformation of the data
but there is a whole family of such powers. Cole [6] suggested that in principle,
there is no reason why a general power transformation should not be applied to the
data. The maximum likelihood estimate (MLE) for the power, which both minimises
the skewness and optimises the fit to normality, is ideally suited to the problem of
skew data. However, it only operates on individual groups and does not allow for
the skewness to change in a smooth manner over the range of the covariate.

The LMS, or Ao, approach of Cole [6] provides a way of obtaining normalised
growth centiles that deals quite generally with skewness as well as non-constant
variance. The method enables us to fit the growth standards to all forms of an-
thropometry by making the simple assumption that the data can be normalised by
using a smoothly varying Box-Cox transformation, so that after the transformation
of the measurements Y (z) to their standardised values Z(¢) they will be normally
distributed.

@)/ a0 -1
20 = =7 0e® ©)

With these normalised measurements, the desired quantile curve for a € [0, 1] can
then be obtained using the following model

Q(a|t)=p)[1+A{)o ()P " (o)) /*0) (10)

which summarises the construction of the centiles by three smooth curves, ie. func-
tions, representing the skewness, the median and the coefficient of variation. The
LMS method works with power transformed measurements, but coverts the mean
back to original units and uses coefficient of variation (CV) rather than standard de-
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viation of the data. In this way the results for different power transformations can be
compared, and the best (Box-Cox) power can be identified as the one which gives
the smallest CV [7]. This method provides a coherent set of smoothed centiles and
the shape of the power curves provide information about the changing skewness,
median and coefficient of variation of the distribution.

The three parameters A, 4 and ¢ were assumed to change smoothly with age.
Green [11] has proposed to estimate the three curves by maximizing the penalised
likelihood,

(R, ,0) v, [0 dr = vy [ W@t —vo [(o"@)%ar (1)

where £(A, 1, 0) is the Box-Cox log-likelihood function derived from (9),

(Ao, 0) = g (1) log (li—logom 22() (12)

and Z(1;) are the SD scores corresponding to Y (#;). In this way, the three curves are
constrained to change smoothly as the covariate changes and, like the centiles, they
can be plotted against the covariate (Figures 3 and 4 ). The curves are fitted using cu-
bic splines to give a non-linear regression, and the extent of the smoothing required
can be expressed in the terms of smoothing parameters (Vy, vy, V). These quanti-
ties are defined to be the traces of the relevant smoothing matrices and are referred
to as the “equivalent degrees of freedom” (edf) [19]. Cole and Green [8] argued that
the distributions of (Vvy,Vy, V) in the LMS model are largely independent of each
other, implying that one edf can be optimised while fixing the other two.

> mw3<-lmsqgreg.fit (weight, age, edf=c(7,13,9),

pvec = c¢(0.03, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.97))
> plot (mw3)
> points(age, weight, pch=".",col="red")

Carey [2] has developed the 1msgreg package that implements the LMS
method in R. Smoothed centiles curves have been fitted to the reference data us-
ing lmsqgreg. £it function with suggested starting edf values setting of 3, 5 and
3 for A, u and o, respectively [3]. The strategy is then to optimise the p curve
edf, by increasing/decreasing the edf by 1 until the change in penalised likelihood
is small i.e. less than 2. Once the u curve is fitted, the process is repeated or the
o curve avoiding the value for edf of 2 which would force a linear trend on the u
curve. Finally, the A curve was fitted similarly to the o curve (Figure 3). However,
in cases of fitting the centiles curves for weight measurement age 2 to 19 years for
both sexes A had to be set to the value of zero, which constrains the entire curve to
be a constant value and forces a log transformation (Figure 4). The same had to be
applied for the fitting of male head circumference age 2 to 19 years.

> mwl9<-lmsqgreg.fit (weight, age, edf=c(0,14,8), pvec = c(0.03,
0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.97), lam.fixed=0)
> plot (mwl9)
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Fig. 3 Centile curves for girls weight birth to 36 months of age

> points(age, weight, pch=".", col="cyan")

Following the suggested strategy, the data was over-fitted and the curves were
clearly undersmoothed. As Cole [8] implies the case for making the centile curves
smooth is to some extent cosmetic - the centiles are more pleasing to the eye when
smoothed appropriately but it is also in the belief that the true population centiles
will themselves change smoothly. Any non-parametric curve estimation method re-
quires some means of controling the smoothness of the fitted functions. For the LMS
method this control is provided by the edf parameters (v, vy, Vo).

As indicated by Carey [2] the value in which to increase/decrease edf and the
change in penalised likelihood depends on the sample size. For large samples the
change of less than 2 units is not significant therefore the large change is needed
and the final decision should depend on the appearance of the curve. In order to
overcome the over-fitting of the curves the edf values had to be relaxed.
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Fig. 4 Centile curves for boys weight 2 to 19 years of age

4 Smoothing and evaluation

The number of effective degrees of freedom is a convenient parameter that expresses
the amount of adjustment necessary for smoothing a set of data. Adjustment of edf
values was done following Carey’s [2] algorithm, this time decreasing the value for
vy, by 1 until the curve appeared to be smooth. The same procedure was followed
for vs and lastly for v, (Figure 5). Finally, the adequacy of the chosen model is
evaluated using the original data.

As discussed by Green [11], the distribution theory for model evaluation statis-
tics formed on the bases of changes in penalised likelihood is currently still unde-
veloped. We have adopted a local-test based approach to formal model evaluation.
Carey’s Imsqreg package [2] provides as a part of the output for a fitted model a col-
lection of model-based z-scores derived from the given quantile regression model.
They are stratified based on the covariate ¢, and within this strata, z-scores are tested
for marginal Gaussianity (Kolmogorov-Smirnov test), zero mean (Student’s 7-test)
and unit variance (x2 test) [3].

> mw3
Dependent variable: gdata$weight , independent variable: gdata$agey
The fit converged with EDF=( 4,6,3 ), PL= 9198.316

KS tests: (intervals in gdata$agey //p-values)
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(-0.001,0] (0,0.348] (0.348,0.802] (0.802,1.54] (1.54,3] Overall
0.000 0.000 0.271 0.324 0.676 0.001
t tests: (intervals in gdataSagey //p-values)
(-0.001,0] (0,0.348] (0.348,0.802] (0.802,1.54] (1.54,3] Overall
0.006 0.000 0.562 0.369 0.568 0.810
X2 tests (unit variance): (intervals in gdata$agey //p-values)
(-0.001,0] (0,0.348] (0.348,0.802] (0.802,1.54] (1.54,3] Overall
0.000 0.000 0.717 0.050 0.462 0.979

The above output from the final fitted model shows that the hypotheses of a zero
mean, unit variance normal distribution in the intervals close to birth are rejected.
The original data is strongly skewed and the edf parameters finally selected are
not able to transform the data sufficiently well, with the final empirical distribu-
tion being slightly skewed. If the smoothing parameters are increased, in particular
V,, the normality of the transformed data can be successfully achieved. However,
as discussed earlier in section 3, we reduced the values of the optimal smoothing
parameters in order to obtain smoother estimated centiles curves.

Table 2 reports on the accuracy of the quantile regression fit in terms of the
discrepency between the nominal and empirical proportions of data lying beneath
selected quantile function for age group birth to 3 years. By and large these results
show that the quantiles of the fitted models do fit the data well.

D
sex  variable N  0.03 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.97

female weight 6,123 0.025 0.052 0.090 0.240 0.506 0.755 0.905 0.950 0.972

Table 2 Table entries are quantile coverage probability estimates. Measurement: Age: birth to 36
months.

S Averaging

We were required to produce reference standards for two age groups: birth to 36
months of age and 2 to 19 years of age. The overlap for the two sets of charts
occurs for ages between 2 and 3 years. The values for both sets of standards in the
overlapping age range is a product of the model fitted to the whole data set for each
specific age group. This means that the centile curves for a particular measurement
in this overlapping period will not be the same for the two sets of charts as they are
based on using different data outside the range 2 to 3 years (Figure 6).

One of the arguments of lmsgreg.fit function is targlen which defines
the number of points at which smooth estimates of A, u, and ¢ should be extracted
for quantile plotting. For both sets of charts we have adopted the default value of 50
for the targlen argument. For the overlapping period 2 to 3 years this produces
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Fig. 5 Final smooth centile curves for girls weight birth to 36 months of age

17 points in the birth to 36 months chart and 3 points in the chart for age 2 to 19
years (Figure 7).
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Fig. 6 Overlapping charts: girls weight
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Fig. 7 Centile curves for girls weight birth to 36 months of age
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In order to make the centile curves for a particular measurement for this over-
lapping period the same for the two sets of charts we have re-estimated the curves
using the following cubic polynomial:

Vi = Bo+ Bixi + Box? + Bax} (13)

To estimate this cubic polynomial for each of the centiles at the lower and upper
boundaries of the overlapping period we have used three adjacent points from each
of the charts (Figures 7 and 8), using the least squares estimator given by (14).

A ! 71 !
Y:X{XX} X'y (14)

For the overlapping period new estimates were calculated using the newly found
polynomial resulting in a smooth overlap (Figure 9). This means that the centiles
for a particular measurement will be the same in the birth to 36 months chart as in
the 2 to 19 years age chart.

Girls weight 2 to 19 years

110

100

90

80

70

weight (kg)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
age (years)

Fig. 8 Centile curves for girls weight age 2 to 19 years
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Girls weight birth to 36 months

weight (kg)

0 4 8 12 16 20 24 28 32 36
age (months)

Fig. 9 Final smooth centile curves for girls weight birth to 36 months of age

6 Comparisons using ANCOVA

6.1 Comparing Geographical Regions

In the following analysis the aim is, for a particular measurement, sex and age group,
to compare the growth trends over age in different geographical regions. These are:

1. North,
ii. Southwest,
iii. Central.

This means that we are looking at a large proportion of the original data used to fit
the LMS models but not all of it as some individuals live in regions other then those
listed above.

One approach, for a particular measurement and sex, would be to fit a different
LMS model to the data in each region and then to compare the fitted models. How-
ever, we are not aware of any existing methodology to make such direct LMS model
comparisons. In our proposed approach, we have taken the final LMS model fitted
to all the data and used it to transform all the individual measurements into standard
deviation scores.

Then, in step 1, a separate cubic regression curve was fitted, where the response
(”y-variable”) is the SDS score and the covariate ("x-variable”) is age, to the data in
each of the three regional groups. These regression lines describe how the mean SDS
score of a given measurement changes with age in each region. The fit of the three
cubic regression curves were then compared with the fit of three quadratic regression
curves. If the difference in fits was not statistically significant then the quadratic
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models were accepted and they were then compared with three linear regression
curves and so on until the simplest model that might be fitted is three different
constant horizontal lines. The three final regression lines can be plotted to provide a
graphical description of the differences (Figure 10).

Girls Weight 0-3

0.8

0.2 L

Z score

-0.2

north
southwest

central

—]

-0.4

-0.6

-0.8

age birth to 3 years

Fig. 10 SDS score regression models in the three geographical regions for weight vs. age; age:
birth to 36 months; sex: female

If there are no differences in the three regions in how a particular measurement
for a given age group and sex changes with age then a single common regression
line would be an appropriate model for all the data in the three regions. Therefore,
in step 2, such a model was fitted to the data. It would be expected that it would
be fairly close to the zero line but not identically zero because we have not used all
the original data in this analysis as explained above. The degree of this line (cubic,
quadratic, etc.) was chosen to be the same as that of the best fitting three separate
ones.

The next stage is to statistically test the fit of the model involving three sepa-
rate regression lines with the fit of the model based on a single common regression
line. We would expect the total residual sum of the squares for the model involving
three regression lines to be less then that which just involves one but we need to test
whether the difference is statistically significant. The method we have used is a stan-
dard ”F-test” in this context, which is appropriate because the standardised data is
Normally distributed . If the p-value of this test is small (less than 0.05) the conclu-
sion would be that the single regression line is inadequate and there are significant
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differences between the regions in how mean SDS score of a given measurement of
a given age group of a given sex changes with age (Table 3).

age: birth to 36 months
sex variable p
female weight < 107°

Table 3 Resulting p-values when testing a common regression model vs. different regression mod-
els for the three regions.

Finally, after finding a significant result we can then go on to use the same
methodology as above but just use pairs of regions in turn to see which are sig-
nificantly different from each other.

This procedure can be summarized for a given sex and measurement by the fol-
lowing steps:

[i] STEP 1: Find the best fitting polynomials having the lowest possible common degree for each
of the three regions.

[ii] STEP 2: We want to answer the question ”Is a common polynomial of the same degree as found
in STEP 1 appropriate for all three regions or do the polynomials vary with region?”

ie. for a particular measurements, sex and age group we want to test:

Hy:Ez|age] = Po+ ...+ Pgage? for each region, where g < 3 is the degree of the common

best fitting polynomial.

vs. Hy : The polynomial for at least two regions differ.

[iii] STEP 3: After finding a significant result in STEP 2 cary out pairwise comparisons between
the regions.

Note that the notation E [z]age] denotes the mean value of z at the given age.
The hypothesis Hy says that a common polynomial of degree g describes the trend
in z-scores over age in each region. On the other hand, the alternative hypothesis,
H, says that the trend in z-scores is described by different polynomials of the same
degree g in the regions.

Nb. in the following tables p denotes the ”p-value” found when testing as above
Hy vs. Hy. Its’ value corresponds to the probability of observing a test statistic value
at least as large as we have done and is calculated under the assumption that the
null hypothesis, Hy , is true. For the stepwise and overall tests in STEP 1 and STEP
2 above it is common practice to reject Hp in favor of H; if p < 0.05 or if the
sample size is large than we may use p < 0.01. To account for carrying out multiple
comparisons (or multiple hypothesis tests) between pairs of regions for a particular
measure as in STEP 3, we would suggest that Hy is rejected in favor of H; if p <
0.003 (ie. 0.01/3) using the Bonferroni method which divides the total significance
level into 3 equal proportions corresponding to the number of pairwise comparisons
we are carrying out.

Note that the results of the analyses carried out in STEP 2 for age birth to 3
years are given in Table 4. The coefficients of the polynomials in the three separate
regions, as well as for all three regions together, are in Tables 4. Those polynomials
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for girls weight age birth to 3 years are plotted in Figure 10. Table 5 details the
p-values for all the pairwise comparisons between regions.

sex: female

variable region Bo Bi B B3

weight central 0.04201 0.38775 -0.34224 0.09184
north 04412  -1.2076 0.91695 -0.18133
southwest -0.36297 -0.20639 0.10564 -0.02648
all 0.039995 -0.005139 -0.020645 0.007602

Table 4 Estimates of the model parameters for individual regions and all three regions together
for female weight, age range birth to 36 months.

sex:female, age birth to 36 moths

weight

)4
north-central <10°°

southwest-central <107°
southwest-north <107°

Table 5 p values for the pairwise comparisons between the different regions using ANCOVA

There are clearly significant differences between the regions for each of the mea-
surements for both sexes in each of the age ranges.

6.2 Comparing Males and Females

Standard deviation scores were used to compare the growth patterns between boys
and girls using very similar methodology as to that described above when compar-
ing the geographical regions. In order to make comparisons for a given measure
between genders, we have used the relevant fitted girls’ LMS model to standard-
ise both girls and boys measures using the zscores function from Carey’s [2]
Imsqgreg package.

We can then plot these standardised measures against age and construct separate
regression lines for boys and girls. Considering that the data were standardised by
the girls model, it is evident that the appropriate regression model for girls would
be zero. However, the z scores of the boys could be explained by an appropriate
polynomial regression model (up to cubic polynomial), describing the existing dif-
ferences between boys and girls. If there are differences then this will be indicated
by a non-zero regression line and we can test whether the two lines are significantly
differnt from each other using ANCOVA. We have also superimposed girls and boys
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Weight 0 to 3

8 12 16 20 24 28
age (months)

19

Boys
== ==Girls

Fig. 11 Comparisons of the growth charts for weight measurement between male and female birth

to 3 years of age.

centiles for a given measure on the same plot to give another graphical impression
of any differences (Figure 11). For children aged 0-3 we found significant differ-
ences for each measure and the fitted regression lines (Table 6) describe how the
differences (measured in girls standard deviation scores) change with age (Figure

12).

Age birth to 36 months

variable Bo Bi B2 Bs
length 0.21719 0.12799 -0.06722 -
head circumference 0.22312 0.75785 -0.56355 0.12686
weight 0.16774 0.70106 -0.65468 0.14854
body mass index - 0.52468 -0.50530 0.12154

Table 6 Estimates of the model’s parameters.

7 Discussion

This study was set up by the Saudi medical authorities who required growth charts
based entirely on data collected from Saudi children and adolescents rather than
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Fig. 12 Comparisons of growth patterns between boys and girls birth to 3 years of age

using a more gebneral alternative, such as those provided by the WHO. We have
seen that for girls weight ( birth to 36 months) the age-=specific conditional quantile
estimates we have constructed using the LMS method by and large successfully
capture the main features of the data and this also proved to be true for the other
growth parameters. In further work we have compared the new Saudi charts with the
2006 WHO standards and found that there are marked differences in corresponding
centiles. Use of the WHO standards in Saudi Arabia would, for example, increase
the prevalence of undernutrition, stunting and wasting [9].

An essential part of our procedure was to try to identify outliers to be removed
from the data prior to estimating the LMS model. We used the robust regression rlm
function to do this, basing our assessment on the weight attached to each observa-
tion by the procedure We should stress that We were not using this model to make
any formal inferences about the form of the conditional mean function. As seen in
Section 2, this worked well with four cases being removed. If these cases were in-
cluded then there is a numerical failure in the LMS model estimation algorithm. All
four deleted cases had z-scores greater than 5 in absolute value. The only other case
which had an absolute z-score bigger than 5 is case 4131 with a z-score of -5.078,
who can be seen listed in Figure 1. This corresponds to a girl aged 0.259 years (3.11
months) who had a weight of only 3.0 kg which is a little higher than case 1235
whose weight was only 2.5 kg at a similar age and who was deleted from the data.

A number of authors have reported that there can be a problem with significant
kurtosis in the residuals from the LMS method [15]. Stasinopoulos and Rigby have
developed the more flexible Box-Cox power exponential model to overcome this
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where thay add an extra parameter to model kurtosis [16]. The LMS model we have
used is a special case of this. In this study we did not consider this alternative.
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