


Diagrammatic relationship among common screening tests of blood coagulation. The major pathways of coagulation are enclosed in the arrow-shaped boxes. The screening tests are indicated at the side of the boxes in relation to the pathways and coagulation factors measured by each.

Relationship of Factor Levels to Severity of Clinical Manifestations of Hemophilia A and B

Туре	Percentage factor VIII/IX	Type of hemorrhage
Severe	<1	Spontaneous; hemarthroses and deep- tissue hemorrhages
Moderate	1–5	Gross bleeding following mild to moderate trauma; some hemarthrosis; seldom spontaneous hemorrhage
Mild	5–25	Severe hemorrhage only following moderate to severe trauma or surgery
High-risk carrier females	30–50	Gynecologic and obstetric hemorrhage

Differences Between von Willebrand Disease and Hemophilia A

	von Willebrand Disease	Hemophilia A
Symptoms	Bruising and epistaxis	Joint bleeding
	Menorrhagia or mucosal bleeding	Muscle bleeding
Sexual distribution	Males = females	-Males
Frequency	1:200 to 1:500	1:6000 males
Abnormal protein	·WF .	Factor VIII
Molecular weight	$0.6-20 \times 10^6$ Da	. 280 kDa
Function	Platelet adhesion	Clotting cofactor
Site of synthesis	Endothelial cell or megakaryocytes	??
Chromosome	Chromosome 12	X chromosome
Inhibitor frequency	Rare :	14-25% of patients
į,		
History	Abnormal · ·	Abnormal
aPTT	Normal or prolonged	Prolonged
Factor VIII activity-	Borderline or decreased	Decreased or absent
-vWF Ag	Decreased or absent	Normal or increased
,		
,		

From: Montgomery RR, Gill JC, Scott JP. Hemophilia and von Willebrand disease. In: Nathan D, Orkin S, editors. Nathan and Oski's Hematology of Infancy and Childhood, 5th ed. Philadelphia: Saunders.

Testing for Thrombotic Predisposition

Hereditary predisposition to thrombosis is associated with a reduction of anticoagulant function (protein C, protein S, AT-III); the presence of a factor V molecule that is resistant to inactivation by protein C (factor V Leiden); elevated levels of procoagulants (a mutation of the prothrombin gene); or a deficiency of fibrinolysis (plasminogen deficiency). When patients are being screened for prothrombotic tendencies, specific tests of the natural anticoagulants are warranted. Although both immunologic and functional tests are usually available, functional assays of protein C, protein S, and AT-III are clinically more useful.

Factor V Leiden is a common mutation in factor V that is associated with an increased risk of thrombosis. A point mutation in the factor V molecule prevents the inactivation of factor Va by activated protein C and, thereby, the persistence of factor Va. This defect, also known as activated protein C resistance, is easily

diagnosed with DNA testing.

The prothrombin gene mutation (G20210A) is a mutation the noncoding portion of the prothrombin gene, with a glyces (G) at position 20210 being replaced by an alanine (A). The mutation increases the amount of prothrombin messenger RNA is associated with elevations of prothrombin, and causes a particle disposition to thrombosis. This abnormality is easily identified with molecular diagnostic (DNA) testing.

Elevated Homocysteine

Levels of homocysteine may be increased as a result of general mutations, causing homocystinuria. Patients with homocystical elevation are predisposed to arterial and venous thrombost a well as to an increase in arteriosclerosis.

POTENTIAL PROTHROMBOTIC STATES

CONGENITAL

Deficiency of anticoagulants

AT-III, protein C or protein S, plasminogen

Resistance to cofactor proteolysis

Factor V Leiden

High levels of procoagulants

Prothrombin 20210 mutation

Elevated factor VIII levels

Damage to endothelium

Homocystinemia

ACQUIRED

Obstruction to flow

Indwelling lines

Pregnancy

Polycythemia/dehydration

Immobilization

Injury

Trauma, surgery, exercise

Inflammation

IBD, vasculitis, infection, Behçet syndrome

Hypercoagulability

Pregnancy

Malignancy

Antiphospholipid syndrome

Nephrotic syndrome

Oral contraceptives

L-Asparaginase

Elevated factor VIII levels

RARE OTHER ENTITIES

Congenital

Dysfibrinogenemia

Acquired

Paroxysmal nocturnal hemoglobinuria

Thrombocythemia

Vascular grafts

AT-III, antithrombin III; IBD, inflammatory bowel disease.