Congenital Heart Disease

Mohammed Alghamdi, MD, FRCPC, FAAP, FACC Associate Professor and Consultant Pediatric Cardiology, Cardiac Science King Fahad Cardiac Centre King Saud University

INTRODUCTION

- CHD ~ 0.8% of live births.
- Major CHD:
 - Ventricular Septal Defect: 35%
 - Atrial Septal Defect: 7 %
 - Patent Ductus Ateriosus: 7 %
 - Coarctation of Aorta: 6 %
 - Tetralogy of Fallot: 6 %
 - Pulmonary valve stenosis: 6 %
 - Aortic valve stenosis: 5 %
 - D-Transposition of great arteries: 4 %

Congenital Heart Disease

- Etiology: Mostly unknown
- Chromosomal abnormalities can cause
 - <u>Trisomy 21:</u> AVSD
 - <u>Trisomy 18:</u> VSD
 - <u>Trismoy 13:</u> PDA, VSD, ASD
 - <u>DiGeorge Syndrome:</u> Arch, Conotruncal abnormalities
 - <u>Turner syndrome:</u> Coarctation of Aorta
 - <u>Williams Syndrome:</u> Supra-aortic stenosis, PA stenosis
 - <u>Noonan Syndrome</u>: Dysplastic pulmonary valve

Classification of CHD

- Divided into 2 major groups:
 - Cyanotic heart diseases.
 - Acyanotic heart diseases.
- Subdivided further according to:
 - Physical Finding
 - Chest X-ray finding
 - ECG finding
- Diagnosis is confirmed by:

- Echo, Cardiac CT/MRI or Cardiac Catheterization.

Classification of CHD

Cyanotic Heart Disease

- Decreased pulmonary flow:
 - Tetralogy of Fallot
 - Tricuspid atresia
 - Other univentricular heart with pulmonary stenosis.
- Increased pulmonary flow:
 - Transposition of great arteries
 - Total anomalous pulmonary venous return.

Acyanotic Heart Disease

- <u>Left Right shunt lesions:</u>
 - Ventricular septal defect
 - Atrial Septal Defect
 - Atrio-ventricular Septal
 Defect
 - Patent Ductus Arteriosus
- Obstructive lesions:
 - Aortic stenosis
 - Pulmonary valve stenosis
 - Coarctation of Aorta

Acyanotic Heart Disease Left – to- Right Shunt lesions

PDA

Left – to- Right Shunt lesions

VSD

ASD

PDA

PATHOPHYSIOLOGY: L-R SHUNT

- L-R shunt toward pulmonary circulation.
 - Increased Qp:Qs ratio
 - Increased cardiac output to the pulmonary circulation (Qp)
 - Reduced of cardiac output to the systemic circulation (Qs)

PATHOPHYSIOLOGY: L-R SHUNT

VSD

L-R shunt at ventricular level: Dilated LA and LV Enlarged pulmonary arteries

ASD

L-R shunt at atrial level: Dilated RA and RV Enlarged pulmonary arteries

PDA

L-R shunt at artery level: Dilated LA and LV

SYMPTOM: L-R SHUNT

Small VSD: Asymptomatic Moderate to large VSD: CHF

Usually asymptomatic Older children: Activity related SOB & Fatigability Rare: CHF , FTT

Small PDA: Asymptomatic Moderate to large PDA: CHF

CONGESTIVE HEART FAILURE

SYMPTOMS

- Diaphoresis
- Poor feeding
- Failure to thrive
- Shortness of breath
- Recurrent chest infection
- Exercise intolerance

SIGNS

- Tachypnia
- Tachycardia
- Cardiomegally
- Hepatomegally
- Active precordium

• No symptom during neonatal period

• due to high pulmonary vascular resistance

- Symptoms of CHF started ~ 2/12 of age
 - diaphoresis, poor feeding, and failure to thrive.
 - shortness of breath, recurrent chest infection.
 - exercise intolerance.

EXAMINATION: L-R SHUNT

Holosystolic murmur

Small PDA: Silent

Large: mid-diastolic murmur Small muscular: ejection systolic murmur

PDA

Fixed Widely splitted second heart sound Ejection systolic murmur Large: mid-diastolic murmur

Large PDA: Continuous "machinery" murmur Large PDA: Widened pulse pressure

INVESTIGATION: L-R SHUNT

- Diagnosis:
 - Chest X-ray:
 - Increased pulmonary vascular marking
 - +/- cardiomegally
 - ECG:
 - Small lesion: Normal
 - Mod to large: chambers enlargement
 - ECHO:
 - Confirm Diagnosis
 - Cardiac Cath: not required for Dx

MEDICAL Rx: L-R SHUNT

Medical Mgx

- Anti-congestive therapy:
 - Diuretics
 - Digoxin.
 - After load reducing agents
- Nutritional support
- ASD: usually no medication needed

INTERVENSION: L-R SHUNT

Surgical closure 4-8 months

Some types in older children can be closed by device via CATH.

VSD

PDA

Most closed by device via CATH around 3-6 years Some types need surgical closure.

Most closed by device via CATH

Surgery needed in premature baby and symptomtic neonate less than 6 kg.

PROGNOSIS: L-R SHUNT

- Untreated VSD and PDA beyond infancy:
 - Eisenmenger's syndrome
 - Sign and symptom of CHF will disappear
 - Patient will become cyanotic
 - R-L shunt

PROGNOSIS: L-R SHUNT

- Untreated ASD:
 - complication happened during adult Life:
 - Eisenmenger's syndrome
 - Atrial arrhythmias
 - Paradoxical embolism (rare)

- Incidence: 4 % of all CHD
 - Associated with Down Syndrome (50%)
- Divided into:
 - Complete AVSD
 - ASD primum/ inlet VSD / common AV valve
 - Balanced vs. Unbalanced AVSD
 - Partial AVSD
 - ASD primum
 - No VSD

- Pathophysiology:
 - Similar to VSD and ASD
 - left to right shunt across the atrial level
 - Left to right shunt at and ventricular level
 - In addition: AV valve regurgitation
 - Significant L-R shunting:
 - Pulmonary over-circulation
 - Increase Qp:Qs ratio.

- Clinical Features:
 - Usually asymptomatic at neonatal period
 - Due to high pulmonary vascular resistance
 - Baby may have slightly lower oxygen saturation
 - Symptoms of CHF started at few months of age
 - Diaphoresis
 - Poor feeding
 - Failure to thrive.
 - Shortness of breath
 - Recurrent chest infection.
 - Exercise intolerance.

- Clinical Features:
 - Physical Examination:
 - Feature of Down Syndrome
 - Tachypnia
 - Tachycardia
 - Active precordium
 - Murmur:
 - Pan-systolic (holosystolic) murmur
 - Hepatomegaly

- Diagnosis:
 - Chest X-ray:
 - Increased pulmonary vascular marking
 - Cardiomegaly
 - ECG:
 - Left Axis deviation with RVH is very suggestive of AVSD
 - ECHO:
 - Confirm Diagnosis
 - Cardiac Cath: not required for Dx

- Treatment:
 - Medical Rx:
 - Anti-congestive therapy:
 - Nutritional suppor
 - Surgical closure for complete VSD:
 - Usually done before 6 months of age to ovoid development of Eisenmenger's syndrome.
 - Balanced AVSD: Biventricular repair
 - Unbalanced AVSD: may need single ventricular repair

Acyanotic Heart Disease obstructive lesion

Coarctation of Aorta (CoA)

Coarctation of Aorta (CoA)

- Incidence: 5-7 % of all CHD
 - Associated with Turner syndrome in female
 - Arch interruption: seen in DiGeorge syndrom
- Can be: Discrete or Diffuse

• Can be mild to severe

PATHOPHYSIOLOGY: CoA

CRTICAL CoA

- Spontaneous PDA closure
 - Obstruction of blood flow to distal arch
 - Hypotension and Shock
 - Acute increase of LV afterload
 - LV dysfunction
- "DUCT DEPENDENT CHD"

MILD CoA

- Collateral vessels develop
 overtime
- Flow maintained between proximal and distal aorta
- Present later on life

CLINICAL PRESENTATION: COA

CRTICAL CoA

- Presented 2-3 wks of life
 - Sign of CHF
 - Circulatory collapse
 - Shock
 - Death

• "DUCT DEPENDENT CHD"

MILD CoA

- Present later on life
 - Murmur
 - Chronic hypertension
 - Headache
 - Fatigue
 - Stroke
 - » Rupture cerebral aneurysm

Clinical Features: CoA

- Physical Examination:
 - Differential cyanosis (severe CoA in newborn)
 - Signs of cardiac shock
 - Reduced or absent femoral pulses
 - Brachio- femoral delay
 - BP in lower limb lower than upper Limb BP
 - Murmur:
 - Ejection systolic murmur at the back
 - Continues murmur due to collateral at the back

DIAGNOSIS: CoA

– Chest X-ray:

- Cardiomegaly
- Prominent aortic knob
- Rib notching
 - » Due to d of collateral vessels
 - » Rarely seen before age of 10 years

– ECG:

- Neonate: RV hypertrophy
- Older children: LV hypertrophy
- ECHO:
 - Usually will establish the diagnosis
- May need Cardiac CT /MRI

TREATMENT: CoA

- Critical CoA
 - "Duct Dependent CHD"
 - Prostaglandin E2 to keep PDA open
- Surgery is the primary intervension

- Trans-catheter balloon angioplasty +/- stent:
 - Recurrent CoA
 - Primary intervention: Discrete CoA in older children

Pulmonary Valve Stenosis

Aortic Valve Stenosis

Cyanotic Heart Disease

Tetralogy of Fallot

Tetralogy of Fallot

• Most common cyanotic CHD

– Incidence: 6 % of all CHD

Can be associated with
 DiGeorge Syndrome

Tetralogy of Fallot

- Four basic components
 - Large VSD
 - Pulmonary stenosis (PS)
 - Overriding aorta
 - RV hypertrophy

CLINICAL FEATURES: TOF

- Depend on the severity of PS
 - -Most newborn:
 - Asymptomatic
 - Ejection systolic murmur on routine discharge exam
 - Initially have mild cyanosis which progress with time:
 - Might present with hypercyanotic spells
 "tet spell" if delayed intervention

CLINICAL FEATURES: TET SPELL

- Usually occur around 9-12 months of age
 - Episodes of acute and severe cyanosis
 - RX:
 - Medical emergency
 - Reduced anxiety "Keep child in his mother lab"
 - Knee-to-chest position
 - Give oxygen
 - Sedation with morphine
 - IV fluid
 - Beta Blocker
 - Phenylephrine
 - Might require emergency surgical intervention

CLINICAL FEATURES: TOF

- Newborn with severe PS or pulmonary atresia
 - Severe cyanosis when PDA close
 - "Duct dependent CHD"
 - Need IV prostaglandin E2

INVESTIGATION: TOF

- CHEST X-RAY:
 - "boot-shaped heart"
- ECG: RVH
- ECHO: confirm diagnosis
- CT/MRI rarely needed

TREATMENT: TOF

Transposition of the Great Arteries

- Incidence: 4 % of all CHD
- Most common CHD presented with cyanosis at birth.
- More common in male
- Higher incidence in infant of diabetic mother

PATHOPHYSIOLOGY: D-TGA

- In Normal heart:
 - Pulmonary and systemic circulations are in series
- In D-TGA:
 - Pulmonary and systemic circulations are in parallel

PATHOPHYSIOLOGY: D-TGA

- Mixing of oxygenated and deoxygenated blood can occur at three levels:
 - Atrial level via ASD/PFO (most important)
 - Great arteries level via PDA
 - Ventricular level via VSD (if present)

PRESENTATION: D-TGA

- Severely Cyanosis after birth
- "Duct Dependent CHD"
- "Reverse differential cyanosis" if Pulm HTN
- No signs of respiratory distress
- Single second heart sound
- Typically: no murmur
- Hyperoxic test: FAIL

INVESTIGATION: D-TGA

- Chest X-ray:
 - "egg on a string" appearance
- ECG:
 - Typically normal
- ECHO: confirm diagnosis
- Cardiac Cath:
 - For septestomy
 - +/- coronary arteries anatomy

MANAGEMENT: D-TGA

- Supportive:
 - Prostaglandin E2
 - Balloon atrial septostomy (for better mixing)

MANAGEMENT: D-TGA

Total Anomalous Pulmonary Venous Return : TAPVD

TAPVD

- All 4 pulmonary veins returns to the right atrium
- Can be:
 - Supracardiac (50%)
 - Cardiac (25%)
 - Infracardiac (20%)
 - Mixed (5%)
- Can be:
 - Obstructed TAPVR
 - Non-obstructed TAPVR

PRESENTATION: TAPVD

- Clinical Feature:
 - Cyanosis at birth
- Diagnosis:
 - Chest X-ray:
 - Increased pulmonary vascualr markings
 - "Figure of eight" in obstructed supracardiac TAPVR
 - ECG: RVH
 - ECHO: Confirm Dx
 - Cardiac CT/MI: may be need

Hypoplastic Left Heart Syndrome

HLHS

- HLHS: one of the most severe form of CHD
 High morbidity and mortality
- Incidence: 1-2 % of all CHD
- multiple level of obstruction at left heart structures.
 - Mitral stenosis to mitral atresia
 - Variable degree of LV hypoplasia
 - Aortic stenosis to aortic atresia
 - Variable degree of ascending aorta hypoplasia

PATHOPHYSIOLOGY: HLHS

- No adequate flow across aortic valve to ascending aorta
- Relies on retrograde PDA flow to:
 - Brain
 - Coronary arteries
- Need ASD/PFO to shunt blood from LA to RA.

PRESENTATION: HLHS

- At birth: Cyanosis
- At 2-4 week of life:
 - Respiratory distress
 - Poor pulses/perfusion
 - Signs of cardiac shock

TREATMENT: HLHS

Tricuspid Atresia

Single Ventricle

STAGED SURGERY UNIVENTRICULAR HEART

BT SHUNT

GLENN

FONTAN

Truncus Arteriosus

Ebstein's Anomaly

