Management of Severe Asthma and COPD

PROF. ABDULAZIZ H. ALZEER

Learning Objectives

Asthma

- Definition
- Pathophysiology
- Factors that triggers Asthma
- Manifestation and How To assess the severity of Asthma
- Treatment

Definition:

- Asthma is a chronic lung disease due to inflammation of the airways resulted into airway obstruction. The obstruction is reversible.
- Asthma is the most common chronic disease particularly among children.

Symptom:

- Cough
- Wheeze
- Tightness in the chest
- Shortness of breath
- Sometimes nocturnal symptoms

The "Tip" of the lceberg

Pathology of Asthma

Smooth muscle contraction Mucosal edema Excessive secretions

Child and Adult Asthma Prevalence United States, 1980-2007

Source: National Health Interview Survey; CDC National Center for Health Statistics

Asthma Prevalence by Sex United States, 1980-2007

Source: National Health Interview Survey; CDC National Center for Health Statistics

Causes:

- Genetic
- Atopy
- Childhood respiratory infections
- Exposure to allergens
- Drugs

Asthma Triggers:

Types of substance	Example
Air pollutants	Tobacco smoke, perfumes, wood dusts, gases, chemicals, solvents, paints
Pollen	Trees, flowers, weeds, plants
Animal dander	Birds, cats, dogs
Medication	Aspirin, anti-inflammatory drugs, B-blockers
Food	Eggs, nuts, wheat

MANIFESTATION OF SEVERE ASTHMA

History of

- Past history of sudden severe exacerbation
- prior intubation and mechanical ventilation for asthma
- prior admission to ICU due to severe attack of asthma
- three or more emergency visits for asthma in the past year
- use of more than 2 canisters per month of inhaled short acting β2 agonist
- current use or recent withdrawal from systemic corticosteroids

SEVERE ASTHMA:

Physical Examination

- HR > 115/min
- RR > 30/min
- Pulsus paradoxus > 10 mmHg
- Unable to speak
- Cyanosis
- Silent chest
- change in mental status
- peak expiratory flow meter >200 L/min

ASTHMA Spirometer

Asthma

Arterial Blood Gases Acideamia Hypoxiamia Hypercarpia рH PCO₂ PO₂ 1. N or ↓ 2. Ν Ν 3.

- **Treatment for Stable Patient:**
- Patient/Doctor Relationship
- Educate continually
- Include the family
- Provide information about asthma
- Provide training in self-management skills

- Treatment for Stable Patient:
- Exposure Risk
- Reduce exposure to indoor allergens
- Avoid tobacco smoke
- Avoid vehicle emission
- Identify irritants in the workplace

Quick Reliever

- Used in acute attacks
- Short acting beta₂- agonists
- Begins to work immediately and peaks at 5-10 minutes

ASTHMA Inhalers and Spacers

Spacers can help patients who have difficulty with inhaler use and can reduce potential for adverse effects from medication.

ASTHMA Nebulizers

- Machine produces a mist of medication
- Used for small children or for severe asthma
- No evidence that it is more effective than an inhaler used with spacers

ASTHMA Inhaled Corticosteroids

Main stay treatment of asthmaReduce airway inflammation

Anti- Ig E Anti-IL 5

- For treatment of moderate to severe allergic asthma
- For treatment of those who do not respond to high dose of corticosteroids

Treatment of Severe Asthma

- Oxygen
- High doses of bronchodilator
- Systemic corticosteroids
- Intravenous fluids
- ICU management

- **Initial Assessment**
- Treatment
- Oxygen

High concentration of oxygen to achieve O2 Sat >92% Failure to achieve appropriate oxygenation and acidemia ↓ assisted ventilation

High doses of inhaled bronchodilator

- Short acting B2 agonist
 - via nebulizer OR
 - via metered dose inhaler through a spacer device
- An inhaled anticholinergics
 (Ipratropium bromide)
 It has synergistic effect with B2 agonist

Systemic Corticosteroids

- intravenous hydrocortisone for those who are unable to swallow or in case of vomiting or disturb level of consciousness
 - It decreases mucus production
 - Improves oxygenation
 - Decreases bronchial hypersensitivity

Intravenous Fluids

- To correct dehydration and acidosis
- Normal saline + sodium bicarbonate/lactate infusion
- Potassium supplement to treat hypokalemia induced by salbutamol

Treatment of Acute Attack of Asthma:

For severe cases consider:

- IV Mg SO₄

Relaxes smooth muscles

- Heliox

Improves laminar flow

- BiPAP

 Mechanical Ventilation – for those who do not respond the above treatments.

Non-invasive Mechanical Ventilation Treatment

ASTHMA Indication for ICU Admission

- Drowsiness
- Confusion
- Silent chest
- Worsening hypoxemia despite supplemental oxygen
- Acidemia and hypercapnia

Mechanical Ventilation

Initial Goals:

- To correct hypoxemia
- To achieve adequate alveolar ventilation
- To minimize circulatory collapse
- To buy time for medical management to work

Indication:

- Coma
- Respiratory arrest
- Deterioration of arterial gas despite optimal therapy
- Exhaustion, confusion, drowsiness

Learning Objectives

- Chronic Obstructive Pulmonary Disease (COPD)
- Definition
- Risk Factors
- Emphysema
- Chronic Bronchitis
- Treatment and Prevention

Chronic Obstructive Pulmonary Disease (COPD)

- Limitation of expiratory flow
- Chronic progressive disease
- Associated with airway inflammation
- Generally irreversible airflow obstruction
- Related to smoking

Chronic Obstructive Pulmonary Disease (COPD)

- Emphysema
- Chronic bronchitis
- Small airway disease

COPD Facts:

- COPD is the 4th leading cause of death in the United States
- COPD has higher mortality rate than asthma
- Leading cause of hospitalization in the US
- 2nd leading cause of disability

COPD Risk Factors

- Smoking: most common cause
- Environmental exposure
 - chemicals. Dust, fumes
 - second hand smoke
- Alpha-1 anti-trypsin (AAT) deficiency

Chronic Obstructive Pulmonary Disease (COPD)

Alpha 1 Anti-Trypsin (AAT)

- is a serine protease inhibitors
- Inhibit neutrophil elastase which break down elastin
- Synthesized and secreted by hepatocytes
- PiZZ phenotype is associated with low plasma concentration of AAT

i.e. associated with development of emphysema

Emphysema

Definition: Abnormal permanent enlargement of the airspaces distal to the terminal bronchiole, accompanied by destruction of their walls and without obvious fibrosis.

Spaces in parenchyma > 1mm = Abnormal

Posteroanterior (PA) and lateral chest radiograph in a patient with severe chronic obstructive pulmonary disease (COPD). Hyperinflation, depressed diaphragms, increased retrosternal space, and hypovascularity of lung parenchyma is demonstrated.

A lung with emphysema shows increased anteroposterior (AP) diameter, increased retrosternal airspace, and flattened diaphragms on lateral chest radiograph.

Irregular Emphysema with Bullae

Clinical Picture

- Dyspnea-progressive
- Cough with or without expectoration
- Wheezing
- Loss of weight
- Hypercapnia>changes in central nervous system
- Barrel chest

Chronic Bronchitis

Definition

 Cough for 3 months in a year for 2 consecutive year

Chronic Bronchitis

Chronic Bronchitis

COPD Oxygen Therapy

Home Oxygen Therapy

Oxygen therapy

For COPD with severe hypoxemia

- It improves survival
- It improves quality of life
- Indicated in patient with $PaO_2 < 60 \text{ mmHg}$

Treatment of Acute Attack of COPD

• Oxygen therapy

Low flow of oxygen to keep the SO₂ ≈ 90% to avoid oxygen induced hypercapnia

- Inhaled bronchodilators
- Inhaled corticosteroids
- Inhaled anti-cholinergic
- Theophylline therapy
- Antibiotics

Indication for ICU Admission

- Severe dyspnea that respond inadequately to initial emergency therapy
- Change in mental status (confusion, coma)
- Persistent or worsening hypoxemia PO2 < 50mmHg and / OR worsening respiratory acidosis pH < 7.25
- Need for mechanical ventilation e.g: apnea or respiratory arrest
- Hemodynamic instability-need for vasopressor

Indication for Non-Invasive Mechanical Ventilation (NIV)

- At least of the following:
- Respiratory acidosis
 PCO2 ≥ 45mmHg and pH < 7.35
- Severe dyspnea with clinical degree suggestive of respiratory muscle fatigue
- Persistent hypoxemia despite supplemental oxygen therapy

COPD

- **Non-Invasive Mechanical Ventilation**
- Both within the ICU and the ward environment have been showing in RCTs and systematic reviews:
- To reduce intubation rate and mortality in COPD patients with decompensated respiratory acidosis.

COPD Non-invasive Mechanical Ventilation Treatment

Rehabilitation program

- Decreased symptoms
- Decreased anxiety an depression improved quality of life
- Decreased hospitalization
- Increase exercise capacity

Changes in FEV₁ with Aging (Smoker vs Non-Smoker)

