حاسين انفسكم مو مره بالاسيد بيس بالنس؟

وصلتوا للمكان الصحيح الي بيطلعكم مو بس فاهمين الا فهلويين بالموضوع هذا... بس عطوني فرصة واتحملوني للنهاية بتطعلون مو بنفس المخ الي دخلتكم فيه.. ما مشيت على طريقة الدكتور الي اعطى المحاضرة مشيت عالطريقة الي ناسبت مخي الصغير ههههههههه بس تراها افيدنس بيسد ^.* courtesy of dr. Abdullah Alsakka

ملفى هذا احفظوه بأثمن مكان عندكم لأن بترجعون له دايما مادمتم دخاترة..

تحمستو اااا!!! يالله بسم الله نبدأ:

اممممم شكلي ما راح أبدأ بأول صفحه عشان ما اصدمكم بالزحمه *. * خلونا ثانيتين نتأمل هذا البياض الفضفاض المريح للعينين.

Normal ranges: PCO2=40 | HCO3= 24 | Cl=100.

Five Steps of Acid-Base Analysis

Step 1: Acidemia (pH <7.38) or alkalemia (pH >7.42)?

Step 2: | Primary respiratory or metabolic disturbance?

Look at PCO2 and pH:

- Metabolic كلهم طالعين سوا أو نازلين سوا Metabolic و نازلين سوا مالعين سوا أو نازلين سوا
- Respiratory واحد طالع والثاني نازل Hespiratory واحد طالع والثاني نازل

Step 3: Is there appropriate compensation for the primary disorder?

winter formula:

- \square Metabolic alkalosis \bigcirc PCO2 = 0.6 x \uparrow HCO3 (\pm 2)
- ☐ Respiratory acidosis: ↑PCO2 10, ↑HCO3 by 1(acute) or 4 (chronic)
- □ Respiratory alkalosis:
 ↓PCO2 10,
 ↓HCO3 by 2 (acute) or 5 (chronic)

الناتج الى طلعلى اقارنه بالـPCO2 حقت المريض اذا طلع حق المريض نفس الى بالحسبه هنا اقول انه صار عنديappropriate response

لكن في في حال اذا الـPCO2 حقت المريض غير مطابقة للي حسبتها وش يعني؟!!There's additional acid base disturbance is going on *اذا الPCO2 للمريض أعلى من الناتج فيعني ان المشكلة الثانيه هيacidosis *اذا الPCO2 للمريض أقل من الناتج فيعني ان المشكلة الثانيه هي alkalosis

Step 4: Is there an anion gap metabolic acidosis (AGMA)?

AG = Na - (HCO3 + CI).

If> 12, an AGMA is present.

خلونا نتفق على شئ ابغاكم دايما دايما تطبقون الخطوة الرابعه وتحسبون الانيون قاب حتى لو الى عندكم ريسباير توري اسيدوزز او الكالوزز دايما دايما احسبوا الانيون قاب في اي سيد بيس ديستربن... لأنه ممكن يكون فيه اسيد بيس دستربنس ثانيه مو دارين عنها بسبب قوة الاولى الى شدت ال بى اتش نحوها.

*معلومه: احنا متعودين مانحط البوتاسيوم مع معادلة الانيون قاب, بس ترا صح لو حطيناه بالمعادلة لكن النورمال رينج بتيغير بيصير ٢٠

Step 5: If metabolic acidosis, is there another concomitant metabolic disturbance?	
In case of	If <u>high anion gap</u> , then calculate \triangle Gap = \triangle AG - \triangle HCO3 = (AG -12) - (24 - HCO3):
High anion	$\mbox{\ensuremath{\mbox{\ensuremath}\ensuremath{\ensuremath{\mbox{\ensuremath}\ens$
gap:	μ If the Δ Gap is <-6, there is a combined AGMA and Normal AGMA.
	д If the ΔGap is between -6 and 6, then you are done :) No additional metabolic
	disorders other than AGMA.
In case of	If normal anion gap, for every 1 mEq/L \uparrow Cl, there should be a 1 mEq/L \downarrow HCO3 (\pm 5).
Normal	If HCO3 decrease is less than predicted, then Normal AGMA and metabolic
anion gap:	alkalosis

لحظظظظه شايفتكم ترا لا تروحووون لسي ماوصلتلكم لمرحلة الفهم الى ابغاها, بما أنه بالمثال يتضحك الكلام بجيب امثلة لحالات مختلفة وبنطبق سوا فالطلاسم الى فوق بتتضح وبتصير اسهل bear with me

EXAMPLES:

CASE 1:

32-year-old man with depression and alcohol abuse presents with altered mental status.

- **■** VBG: pH=6.9, pCO2=29, pO2=100
- Metabolic panel: Na=140, Cl=101, HCO3=5

Let's apply the Five Steps of Acid-Base Analysis:

Step 1: | **Acidosis** (pH < 7.38)

Step 2: Primary respiratory or metabolic disturbance?

Look at PCO2 and pH:

■ pH and PCO2 going in same direction → Metabolic

Step 3: Is there appropriate compensation for the primary disorder?

Apply winter formula:

Metabolic acidosis: $PCO2 = [1.5 \times (HCO3)] + 8$ = $[1.5 \times (5)] + 8 = 15$

but the patient's pCO2 is higher than 15. Therefore, a **respiratory acidosis** is also present, possibly secondary to CNS depression.

Step 4: Is there an anion gap metabolic acidosis (AGMA)?

$$AG = Na - (HCO3 + CI).$$

= 140 - (101 + 5) = 34 "high anion gap"

Step 5: If metabolic acidosis, is there another concomitant metabolic disturbance?

high anion gap, then calculate Δ Gap = Δ AG - Δ HCO3 = (AG -12) - (24 - HCO3) = (34-12) - (24-5) = 3

this pt Δ Gap between (-6 to 6) so No additional metabolic disorders other than AGMA.

■ Answer: Anion gap metabolic acidosis and respiratory acidosis.

CASE 2:

A 68-year-old man who recently took antibiotics for a skin infection presents with 10 episodes of watery diarrhea per day for the last 5 days.

- VBG: pH 7.34, pCO2 34, pO2 80
- Metabolic panel: Na 135, Cl 108, HCO3 18

Let's apply the Five Steps of Acid-Base Analysis:

Step 1: | **Acidosis** (pH < 7.38)

Step 2: Primary respiratory or metabolic disturbance?

Look at PCO2 and pH:

■ pH and PCO2 going in same direction → Metabolic

Step 3: Is there appropriate compensation for the primary disorder?

Apply winter formula:

Metabolic acidosis: $PCO2 = [1.5 \times (HCO3)] + 8$ = $[1.5 \times (18)] + 8 = 35$

The pt's pCO2 is near to 35 (±2 is allowed).so this pt had an appropriate response

Step 4: Is there an anion gap metabolic acidosis (AGMA)?

Step 5: If metabolic acidosis, is there another concomitant metabolic disturbance? normal anion gap, for every 1 mEg/L ↑CI, there should be a 1 mEg/L ↓HCO3 (±5).

In this case: Cl ↑ by 8 and HCO3 ↓ by 6; therefore, there is no metabolic alkalosis.

Answer: NAGMA due to diarrhea

CASE 3:

A 70-year-old smoker presents with an acute onset of shortness of breath.

- VBG: pH 7.30, pCO2 = 60 mmHq, pO2 60 mmHq
- Metabolic panel: Na 135, Cl 100, HCO3 30

Let's apply the Five Steps of Acid-Base Analysis:

Step 1: | **Acidosis** (pH < 7.38)

Step 2: Primary respiratory or metabolic disturbance?

Look at PCO2 and pH:

pH and PCO2 are NOT going in same direction → Respiratory

Step 3: Is there appropriate compensation for the primary disorder?

Apply winter formula:

مريضنا واضح انه كرونك (chronic) PCO2 10=↑HCO3 by 4 (chronic) مريضنا واضح انه كرونك Respiratory acidosis: ↑PCO2 10=↑HCO3 by 4 (chronic) بهذا الكيس الPCO2 زاد عن الطبيعي ب٠٠ فالبايكارب لازم يزود عن الطبيعي ب٨٠ فيصير توتال بايكارب المحسوبة ببياكارب المريض (٣٠) نكتشف انها غير مطابقة للمحسوبة فمعناته فيه اسيد بيس ديسوردرز ثانيه شغاله الحين وهي:

acute on top of chronic respiratory acidosis is present.

Step 4: Is there an anion gap metabolic acidosis (AGMA)?

AG = Na - (HCO3 + CI).

= 135-(100+26) = 9 "No anion gap metabolic acidosis"

Step 5: Not applicable

Answer: Acute on chronic respiratory acidosis due to COPD exacerbation

CASE 4:

A 22 year-old woman presents with 4 hours of numbness in both hands typical of previous episodes of anxiety.

- ABG: pH 7.48, pCO2 30 mmHg, pO2 86 mmHg
- Metabolic panel: Na 140, Cl 110, HCO3 22

Let's apply the Five Steps of Acid-Base Analysis:

Step 1: | **Alkalosis** (pH >7.42)

Step 2: Primary respiratory or metabolic disturbance?

Look at PCO2 and pH:

PH and PCO2 are NOT going in same direction → Respiratory

Step 3: Is there appropriate compensation for the primary disorder?

Apply winter formula:

من الهيستوري واضح اكيوت (acute) Respiratory alkalosis: ↓PCO2 10→ ↓HCO3 by 2 (acute) عبهذا الكيس الهيستوري واضح اكبورب لازم ينقص عن الطبيعي باثنين فيصير توتال بايكارب ٢٢ .. لما الحين نجي نقارن البايكارب الي طلعناه بحق المريض نلقاه انهم متساوييين معناته الحمدلله مريضنا كومبنزيتد وماعنده ديسوردرز اصافية

Step 4: Is there an anion gap metabolic acidosis (AGMA)?

AG = Na - (HCO3 + CI).

= 140-(110+22) = 8 "No anion gap metabolic acidosis"

Step 5: | Not applicable

■ Answer: Acute respiratory alkalosis secondary to a panic attack

Theoretical Information:

- Rank the most common life-threatening acid base disturbance? First METABOLIC ACIDOSIS, second respiratory acidosis, then metabolic alkalosis
 - N.B: respiratory alkalosis is usually benign
- 3 most common cause of high anion gap metabolic acidosis: DKA, lactic acidosis and renal failure
- 3 most common cause of normal anion gap metabolic acidosis: diarrhea, renal tubular acidosis and vasico-urinary fistula
- most common cause of high anion gap metabolic alkalosis: volume depletion (vomiting, NG suction, loop or thiazide diuretics)
- High anon gap metabolic acidosis + high osmolar gap:
 Toxic alcohol (اثنين لا ثالث لهما ethylene glycol and methanol)

خلصنا,,, سويت تنشيف للجدول عشان لوودكم اطبعوه حجم صغير وغلفوه بورق مقوى يصير ميدالية دافورية *.^

Five Steps of Acid-Base Analysis		
Step 1:	Acidemia (pH <7.38) or alkalemia (pH >7.42)?	
Step 2:	Primary respiratory or metabolic disturbance?	
Look at PCO2 and pH:		
If pH and PCO2 going in same direction →Metabolic If all and PCO2 NOT point in a same direction. Because the property of the proper		
■ If p	H and PCO2 NOT going in same direction →Respiratory	
Step 3:	Is there appropriate compensation for the primary disorder?	
winter formula:		
¤ Me	tabolic acidosis: PCO2 = [1.5 x (serum HCO3)] + 8 (±2)	
Metabolic alkalosis: ↑PCO2 = 0.6 x ↑HCO3 (±2)		
☐ Respiratory acidosis: ↑PCO2 10, ↑HCO3 by 1(acute) or 4 (chronic)		
☐ Respiratory alkalosis: ↓PCO2 10, ↓HCO3 by 2 (acute) or 5 (chronic)		
, , , , , , , , , , , , , , , , , , , ,		
Step 4:	Is there an anion gap metabolic acidosis (AGMA)?	
Step 4:	AG = Na - (HCO3 + CI).	
	AG = Na - (HCO3 + CI). If> 12, an AGMA is present.	
	AG = Na - (HCO3 + CI).	
	AG = Na - (HCO3 + CI). If> 12, an AGMA is present.	
You	AG = Na - (HCO3 + CI). If> 12, an AGMA is present. must calculate the anion gap in whatever acid base disturbance you encounter If metabolic acidosis, is there another concomitant metabolic disturbance? If high anion gap, then calculate Δ Gap = Δ AG - Δ HCO3 = (AG -12) - (24 - HCO3):	
You Step 5: In case of High	AG = Na - (HCO3 + CI). If> 12, an AGMA is present. must calculate the anion gap in whatever acid base disturbance you encounter If metabolic acidosis, is there another concomitant metabolic disturbance? If high anion gap, then calculate Δ Gap = Δ AG - Δ HCO3 = (AG -12) - (24 - HCO3): \square If the Δ Gap is > 6, there is a combined AGMA and metabolic alkalosis.	
You Step 5: In case of High anion	AG = Na - (HCO3 + CI). If> 12, an AGMA is present. must calculate the anion gap in whatever acid base disturbance you encounter If metabolic acidosis, is there another concomitant metabolic disturbance? If high anion gap, then calculate Δ Gap = Δ AG - Δ HCO3 = (AG -12) - (24 - HCO3): \square If the Δ Gap is > 6, there is a combined AGMA and metabolic alkalosis. \square If the Δ Gap is <-6, there is a combined AGMA and Normal AGMA.	
You Step 5: In case of High	$\label{eq:AG = Na - (HCO3 + CI).} If> 12, an AGMA is present. \\ must calculate the anion gap in whatever acid base disturbance you encounter \\ \hline \emph{If metabolic acidosis, is there another concomitant metabolic disturbance?} \\ If \underbrace{ \mbox{high anion gap} }_{\mbox{$\mbox{$\mbox{μ}}}, $\mbox{\mb	
You Step 5: In case of High anion	AG = Na - (HCO3 + CI). If> 12, an AGMA is present. must calculate the anion gap in whatever acid base disturbance you encounter If metabolic acidosis, is there another concomitant metabolic disturbance? If high anion gap, then calculate Δ Gap = Δ AG - Δ HCO3 = (AG -12) - (24 - HCO3): \square If the Δ Gap is > 6, there is a combined AGMA and metabolic alkalosis. \square If the Δ Gap is <-6, there is a combined AGMA and Normal AGMA.	
You Step 5: In case of High anion	AG = Na - (HCO3 + CI). If> 12, an AGMA is present. must calculate the anion gap in whatever acid base disturbance you encounter If metabolic acidosis, is there another concomitant metabolic disturbance? If high anion gap, then calculate Δ Gap = Δ AG - Δ HCO3 = (AG -12) - (24 - HCO3): \square If the Δ Gap is > 6, there is a combined AGMA and metabolic alkalosis. \square If the Δ Gap is <-6, there is a combined AGMA and Normal AGMA. \square If the Δ Gap is between -6 and 6, then you are done:) No additional metabolic disorders other than AGMA.	
You Step 5: In case of High anion gap:	$\label{eq:AG = Na - (HCO3 + CI).} If> 12, an AGMA is present. \\ must calculate the anion gap in whatever acid base disturbance you encounter \\ \hline \emph{If metabolic acidosis, is there another concomitant metabolic disturbance?} \\ If \underbrace{ \mbox{high anion gap} }_{\mbox{$\mbox{$\mbox{μ}}}, $\mbox{\mb	

gap: