Liver disease in children

Dr. Ahmed Al-Sarkhy MD, MHSc, FRCPC
Professor of pediatrics
Pediatric gastroenterology \& hepatology consultant
College of medicine \& KKUH
King Saud university

Notes taken by: Sarah Alshamrani

Objectives

- To understand the anatomy \& physiology of liver \& biliary tree
- To be able to read \& interpret the basics of liver function tests
- To be able to recognize the variable presentations of acute \& chronic liver disease
- To know the most common conditions causing neonatal liver diseases \& chronic liver diseases in children
- To know how to diagnose these conditions appropriately

PART-1

NORMAL ANATOMY \& PHYSIOLOGY OF THE LIVER

Liver anatomy

Liver blood supply

- Liver has dual (bouble) Blood supply resources;
- 70\% from portal vein (nutrients)
- 30\% from Hepatic artery (oxygenated blood)

So liver is the least organ to be affected in case of shock, if you find that there is an
insult to liver secondary to shock or hypotension this mean that the insult was severe enough to affect the organ that has double blood supply

This is the histological pic of the hepatocyte, it's hexagonal. all the functions of the liver happens inside the hepatocytes then all secretions from hepatocyte goes to the canaliculi (the green one) then the canaliculi they form the bile duct. the blue one is the portal veins that will compine to form the central vein which will descend to inferior vena cava to the heart

Liver Histology

© Fleshandbones.com Davies et al: Human Physiology

Liver FUNCTIONS

Synthetic Function

1- Glucose Glocuse storage + convert glycogen to glucose in case of fasting
2- Plasma proteins:
(albumin, globulins, Clotting factors)

3-Lipids: cholesterol and
lipoproteins
4- Bile salts imp to fat absorption

Detoxification and excretion

1- Bilirubin
2- Ammonia to urea (thenv gee excreated with
3-Drug metabolites
4-Cholesterol

Storage Function

1- Glucose \rightarrow Glycogen
2- Vitamins A, D, E, K and B_{12}

What are the liver function markers?

Liver enzymes \# LFTs

- Enzymatic markers:
- ALT (more specific)
- AST comes from different sources ilie RBCs, small bowel, muscle diseases
- ALP can come from bone (that's why it's high in growing kids and pregnant ladies cuz it comes from placenta)
- GGT (more specific)
- Synthetic function
markers:
- Glucose
- Bilirubin
- Bile acids
- Albumin, Globulins
- Clotting factors (PT \&PTT)
- Urea (from NH3 \& AAs)

Bilirubin metabolism

1- RBCs half-life is about 20 days then it breakdown into different component one of them is the unconjugated bilirubin (fat soluble), it needs to be carried out by albumin nside the blood then it will be taken to the liver. inside the liver, it comes
conjugated (water soluble) then it goes to biliary system to the small bowel to the large bowel where it meet the normal
flora which convert
conjugated bilirubin into
urobilinogen. 90% of
urobilinogen will go through colon then stool and this what will give the stool its normal color while 10% of urobilinogen will go to the
enterohepatic circulation
to be reabsorbed and then get excreted through the kidney.

Hyperbilirubinemia: (important numbers)

- Hyperbilirubinemia (HB) biochemically = TSB > 1.5 $\mathrm{mg} / \mathrm{dl}$ (26 mmol/l)
- Jaundice become clinically evident if total SBL > $5 \mathbf{~ m g} / \mathrm{dl}$ ($86 \mathrm{mmol} / \mathrm{l}$)
- Conjugated HB: if cong. Billi. > $\mathbf{2 0} \%$ of the total Bili (mcq)

Hyperbilirubinemia

- Conjugated/Direct HB \Leftrightarrow Liver disease
- Unconjugated/Indirect HB is mostly non-liver related (RBC hemolysis-- Muscle disease) EXCEPTIONS: nderact mopatamenema but here
- Criglar Najjar syndrome
- Gilbert syndrome

Causes of un-conjugated HB

 (MCQs) How to differentiate? breast feeding jaundice is related to the feeding itself ithappens in the first few days of life because the mother doesn't have enough mik so the child get little bit dehydrated and become jaundice while the breast milk jaundice is caused by the component of the milk itself it has some component that delay the
conjugation process \& it usually occur late around $1-2$ weeks of life. both of them are conjugation process \& it usually occur late around $1-2$ weeks of life. both of them are

Haemolysis ;
will be discussed in
different lecture

- COOMB +ve:
- ABO incompt., Rh incompt
- Autoimmune
- Drug-induced HA
- COOMB - ve;
- RBC membrane defects-Hbpathy- Enzyme defects
- HUS

Non- haemolysis;
1- Breast feeding/Milk Jaundice

2- Criglar Najjar syndrome
3- hypothyroidism
when the baby have hypothyroidism he will be a very slow feeder > dehydrated > indirect hyperbilirubinemia. In addition, thyroxipe is very important hormone in the conjugation process of the bilifubin
4- Gilbert syndrome

Biochemical Patterns of liver diseases

- Isolated Hyperbilirubinemia (HB)
- Isolated abnormal liver enzymes (w/t HB)
- Both (Hyperbilirubinemia with abnormal liver enzymes)
$\left.\begin{array}{c|l|}\text { Isolated HB } & \begin{array}{l}\text { HB w } \\ \text { abnormal }\end{array}\end{array} \begin{array}{c}\text { Isolated abnormal } \\ \text { liver enzymes }\end{array}\right\}$

Isolated Hyperbilirubinemia

Disease	Defect	Manifestations	TREATMEN I
Gilbert's syndrome Present at childhood - adolescent	Mutation in UGT1A1 (< 30\% of the normal activity) of the enzyme UGT1A1	Mild jaundice during stress	None ng, sick
Crigler-Najjar syndrome type 1 In infants	Mutation in UGT1A1 (absent activity)	Sever jaundice (risk for kernicterus) Permanent CNS insult	PhtoTx Exchange Tf Liver Tp
Crigler-Najjar In infants syndrome type 2	Mutation in UGT1A1 (<10\% of the normal activity)	Mild-mod jaundice	Phonoparb itone This will induce
Direct HB Both benign, present after delivery			
Dubin-Johnson syndrome	MRP2 receptor mutation (impair transport process across canalicular membrane)	Neonatal cholestasis - no symptoms	None
Rotor syndrome	OTP1B1 \& OTP1B3 mutation (affect reuptake of cong.Billi by hepatocytes)	Neonatal cholestasis - no symptoms	None

Patterns for liver diseases:

1) Cholestatic or obstructive bile duct injury GGT /ALP > AST/ALT
2) Hepatocellular or liver cell injury: ALT/AST > GGT/ALP
3) Mixed: Mostly

- There is often considerable overlap between injury types in a patient who has liver disease.

QUESTIONS

FROM PART 1

PART-2

Liver disease in children

Liver disease in children

- Variable : age dependant
- Infants: Biliary atresia (BA), Neonatal hepatitis, metabolic liver disease, genetic disorders (progressive familial intraheptaic cholestasis (PFIC)
- Older children = adults liver diseases:

Viral Hepatitis, Wilson disease, Auto-immune hepatitis, ect...

- The main presenting symptoms of liver disease is jaundice
- Any jaundice after 2 weeks of age should be investigated (MCQ)

Cholestatic liver disease

- Cholestasis \rightarrow chole= bile Stasis=stagnation
- The obstruction of bile flow either:
- Mechanical block (biliary atresia, stones...) or
- Functional block (cellular receptor \& transporter levels):eg: progressive familial intrahepatic cholestasis (PFIC)

Very common cause of cholestasis in
pediatric in our country

- Cholestasis is characterized by an accumulation of compounds that cannot be excreted through the bile
- Conjugated/direct bilirubin \rightarrow jaundice (Cholestasis \# jaundice)
- Enzymes (GGT/ALP>ALT/AST) \rightarrow high liver enzymes in serum
- Bile salts \rightarrow itchiness it could be severe enough to do liver transplant (severe itchiness > cry all night > not able
- Cholestrol \rightarrow xanthomas

Presentation of cholestasis

- Jaundice (accumulation of conjugated bilirubin)

- Dark and foamy urine (bile salts in the urine)
- Pruritis (accumulation of bile salts under the skin)
- Xanthomas depositions (accumulation of cholestrol in the skin)
- Hepatomegaly +/- Splenomegaly (Portal HTN, Storage disease, infiltrative process)
- Failure to thrive (FTT)/ poor weight gain
- Incidental lab finding

Signs of cholestatic liver disease

aundiced + abdominal distention (ascites) + muscle wasting

Evaluation of infants with cholestatic liver disease

- STEP1: Confirm the presence of cholestasis (Clinically: jaundice, acholic stool, pruritis, \& lab: direct hyperbilli)
+ high GGT
- STEP 2: Rule out surgical obstruction such as Biliary atresia, Choledocal cyst and GB stones (Abdm US)

Normal? go to step 3
Gallbladder

- STEP 3: Investigate the treatable medical conditions:
- Infections: UTI, TORCH infections
- Endocrine: hypothyrodism, panhypopituitarism
- Metabolic disorders (Galactosemia, Tyrosenemia)
- STEP 4: Further studies for other causes (genetic/metabolic)

Hepato-cellular liver disease

- Necrosis of hepatocytes following a viral, ischemic or toxic insult to the liver will cause primarily an elevation of enzymes found within the hepatocyte (ALT and AST)
- In hepatocellular disease, the serum levels of GGT and AP do not rise to the same degree as the aminotransferases (in general)

Chronic hepatitis

- Definition:
- an inflammatory condition of the liver in which the biochemical and histologic abnormalities persist for more than 6 months from any disease.
- Chronic hepatitis in children can be caused by: viral infection (Hep B \& C); autoimmune process; hepatotoxic drugs; or metabolic, or systemic disorders
- Can progress to CLD if the primary disease not treated well

Causes of liver disease in

 neonates \& infants (both types)- Cholestatic disorders

Biliary atresia
-Choledochal cyst
-Paucity of intrahepatic bile ducts (eg, Alagille syndrome)
-Progressive familial intrahepatic cholestasis syndromes (Byler disease and syndrome)
-Benign recurrent intrahepatic cholestasis
-Caroli disease and syndrome
-Inspissated bile (S / P hemolytic disease)
Cholelithiasis

- Idiopathic neonatal hepatitis and mimickers
- Cystic fibrosis
- Viral hepatitis or other infectious diseases in the neonate
-Cytomegalovirus
-Herpes simplex virus/herpes zoster virus/human herpesvirus 6
-Epstein-Barr virus
-Parvovirus B19
—Rubella
—Reovirus-type 3
-Adenovirus
-Enterovirus
-Bacterial sepsis/urinary tract infection
-Syphilis
-Tuberculosis
-Toxoplasmosis

Causes of liver disease in neonates
 \& infants

- Metabolic disease
-Disorders of peroxisomal function (Zellweger syndrome)
-Disorders of bile acid metabolism
Disorders of urea cycle (arginase deficiency)
-Disorders of amino acid metabolism tyrosinemia)
-Disorders of lipid metabolism (Niemann-Pıck type C/Gaucher/Wolman)
—Disorders of carbohydrate metabolism galactosemia, fructosemia, type IV glycogen storage disease)

```
- Toxic/pharmacologic injur) (eg, acetaminophen, total parenteral nutrition, hypervitamınosis A)
```


QUESTIONS from part 2

PART-3

SPECIFIC LIVER DISEASES IN INFANTS

Imp in real life \& MCQs

Biliary Atresia (BA)

- Biliary atresia is an obstructive disease of the biliary tree (mainly extra-hepatic) secondary to idiopathic inflammatory/autoimmune process??
- It leads to gradual fibrosis and ultimate obliteration of the biliary tract \rightarrow biliary cirrhosis \rightarrow liver failure \rightarrow infant death within $\mathbf{2}$ years If not treated (surgery or liver transplantation)
- The most frequent indication worldwide for liver transplantation among infants and children (NOT in KSA)

BA - Diagnosis

- Clinical presentation:
- It presents with signs of cholestasis (jaundice, acholic stool, pruritis, FTT) in the first 2-6 weeks of life (MCQ)
- Abdominal US: rule out other causes of biliary obstruction (choledochal cyst, GB stones...)
congenital anomaly that affect
the biliary system
- Hepato-biliary scintography = nuclear scan (HIDA scan):
- shows good uptake of tracer and then NO excretion into the intestine, even 24 hours later (next slide)

Hepato-biliary scintigraphy (HIDA scan)

HIDA scan in BA patient

BA - Diagnosis

- A liver biopsy:
- confirms the diagnosis by revealing characteristic findings (proliferation of the interlobular bile ducts, periportal fibrosis, and bile plugs in canaliculi and ductules)
- Definitive diagnosis is confirmed by Intra-operative cholangiogram

Definitive diagnosis is confirmed by Intra-operative cholangiogram

Normal study

Abnormal study (hypoplastic common bile duct)

BA Management

- Surgical correction (Kasai procedure or porto-entero-stomy) :
removing the blocked bile ducts and gallbladder and replacing them with a segment of
Or hepato-entero-stomy
child's own small intestine
- Should be done before 2 months of age (MCQ)
- after this age, there is increased risk of fibrosis \& subsequent cirrhosis \rightarrow decrease the chance for surgery success)
- Liver transplantation if:
- Kasai failed, or
- Late presentation (> 3 months) or
- Decompensated liver disease

Choledocal cyst

- Cystic dilatation of the biliary tree at different levels \rightarrow obstructive picture Diagnosed with us
- Present with cholestasis picture, abdominal mass or asymptomatic, biliary stones or biliary carcinoma in adults

only we resect the cyst

here we have to resect the whole section
- Treatment: surgical excision

Alpha-1 Antitrypsin deficiency

- A-1 AT is a protease inhibitor (inhibit elastase, trypsin) \rightarrow protect lung from neutrophil elastase destruction
but in liver it's total different mechanism, the problem is the accumulation of Pi ZZ
- A-1 AT deficiency cause:
- Liver disease (children or adults)
- Emphysema lung disease (mainly seen in adults)

Autosomal Recessive

- AR disease (rare in our community) Genetic mutation
- Pi MM \rightarrow Pi ZZ \rightarrow form abnormal A-1 AT protein \rightarrow failed excretion from liver (trapped) \rightarrow cholestatic liver disease

Alpha-1 Antitrypsin deficiency

- Dx:
- A-1 AT level, phenotyping (pi ZZ) and
- confirmed with Liver biopsy (seen in special stain)
- Genetics
- Treatment: supportive
- Prognosis: varies (improve over time> chronic liver disease

Neonatal Hepatitis

- "Idiopathic" neonatal hepatitis = an aetiology has not been identified
- The list gets smaller overtime (new advancement in diagnostic modalities = more genetic \& metabolic causes are discovered daily)
- Management of these infants involves supportive measures till specific cause found
?? Questions PART 3

Part 4

SPECIFIC LIVER DISEASES IN OLDER CHILDREN

Liver disease in older children = adults !!

- Infectious (Viral, Bacterial, Protozoal)
- Toxic/medications (drugs, TPN)
- Ischemia (CR arrest, hypotention)
- Metabolic disorders (CHO, FAT, Amino Acids)
- Autoimmune: AIH
- Genetics; Wilson disease
- Vascular (thrombosis)
- Infiltrative/Malignancy (leukemia, primary liver tumours)

Acute hepatitis

- Five primarily viruses: hepatitis $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E
- The clinical presentation of viral hepatitis varies with the pathogen (hepato-cellular injury \rightarrow mixed)
- HEPATITIS A: (MCQs)
- Presentation:
- flu-like illness , Anorexia, fever, vomiting, abdominal pain, darkening of the urine, following ingestion of contaminated food or contact with infected patient (oral-fecal route)
- Hepatitis A is often an-icteric (no jaundice) in young children ($<5 \mathrm{y}$) and frequently is unrecognized

HEPATITIS A

- Diagnosis of acute infection is based on the presence of antiHAV IgM antibody in serum (MCQ)
- The disease typically is self-limited in children and often is clinically not clear
hepatocyte and all the liver cells are destroyed \& the only cure is liver transplant
- No chronic carrier state is identified (full recovery or rarely death from fulminant liver failure)
- Treatment is supportive (IVF, Antipyretics)
- Prevention: Hep. A vaccine: 2 doses (18 ms \& 24 months)

Hepatitis B

- Hepatitis B virus (HBV) infection can cause both acute and chronic hepatitis
- It can progress to cause cirrhosis and hepatocellular carcinoma if not treated (take long time to happen)
- Risk of transmission: primarily vertical (mother to baby) in children or via contaminated blood + other risk factors..
- Diagnosis: Hepatitis B surface antigen (HBsAg)
- Chronic HBV infection is associated with the persistence of HBsAg and HBV DNA for >6 moths

HBV serology markers

Chronic hepatitis

HBV serology markers.. recovery

Hepatitis B serological markers

* $\mathrm{HBsAg}=>$

Hepatitis B surface antigen
*Anti-HBs =>
Hepatitis B
surface
antibody

* Anti-HBc =>
hepatitis B
core antibody
* IgM Anti-HBc $=>\operatorname{lgM}$
antibody to
hepatitis B
core antigen
* $\mathrm{HBeAg}=>$

Hepatitis B e antigen

* $\mathrm{HBeAb}=>$

Hepatitis B e antibody

			HBsAg => +ve => Infection If it was: IgM Anti-HBc $\Rightarrow>$ acute infection IgG Anti-HBc => chronic infectior
HBsAg anti-HBc anti-HBs	negative negative negative	Susceptible	
HBsAg	negative	Immune due to natural infection	
anti-HBc anti-HBs	positive positive		Anti-HBs $=>+$ ve $=>$ Immunity
HBsAg anti-HBc anti-HBs	negative negative positive	Immune due to hepatitis B vaccination	How to differentiate when Anti-HBs is +ve whither it's previous infection or got vaccinated? (both have -ve HBsAG \& +ve Anti-HBs)
HBsAg anti-HBc	positive positive	Acutely infected	
IgM anti-HBc anti-HBs	$\begin{aligned} & \hline \text { positive } \\ & \hline \text { negative } \end{aligned}$		
HBsAg anti-HBc	positive positive	Chronically infected	By Anti-HBc Vaccinated => -ve Anti HBc Infected (natural immunity) $\Rightarrow+$ ve Anti-HBc HBeAG => +ve => high infectivity HBeAb => +ve => low infectivity
IgM anti-HBc	negative		
anti-HBs	negative		
HBsAg anti-HBc anti-HBs	negative positive negative	Interpretation unclear; four possibilities: 1. Resolved infection (most common) 2. False-positive anti-HBc, thus susceptible 3. "Low level" chronic infection 4. Resolving acute infection	

Treatment

- Prevention:
- newborn of Hep BsAg-positive mothers (MCQ):
- Passive immunization: Hep. B Immunoglobulins (within 12 hrs of birth)
- Active immunization: Hep. B Vaccine after birth (within 7 days after birth, then at 1 month \& 6 months)
- Rx for older children: antiviral meds
- ??? Wait \& observe (spontaneous recovery, new better antiviral meds with less side effects)

Hepatitis C

- Hepatitis C virus (HCV) causes acute hepatitis, which progresses to chronic disease (End-stage liver disease can occur in up to 10 \%)
- Risk of transmission similar to hepatitis B
- Diagnosis is based on the detection of
- persistently elevated anti-HCV antibodies (above 18 ms of age)
- confirmed by PCR for HCV RNA-active infection Why? because below 18

Hepatitis C

- Treatment:
- Spontaneous viral clearance from acute infections can occur in pediatrics (15-56\%)
- antiviral Rx (new generation, > 95\% effective)
- Prophylaxis: no vaccine yet

Hepatitis D netmonater

- Hepatitis D virus (HDV) infection occurs only in patients who have HBV infection
- Associated primarily with intravenous drug abuse
- HDV usually aggravates liver disease in a patient who has hepatitis B and always should be considered in those who have particularly aggressive HBV disease

Hepatitis E

- Hepatitis E virus (HEV) occurs in epidemics in parts of the world that have poor sanitary conditions
- It can be a particularly devastating disease in pregnant women can cause abortion

Viral hepatitis.. summary

	Hepatitis A virus (HAV)	Hepatitis B virus (HBV)	Hepatitis C virus (HCV)	Hepatitis D virus (HDV)	Hepatitis E virus (HEV)
Viral genome	RNA		DNA		RNA

$A B$, antibody; DNA, deoxyribonucleic acid; RNA, ribonucleic acid

Wilson disease (a must to know)

- AR disorder
- caused by a defect in biliary copper excretion
- Excessive copper accumulation (multi-systems):
- liver \rightarrow leads to cirrhosis

Psychosis \&
Cloudiness Nephropathy depression

- Other organs: cornea, kidneys, and brain, resulting in extra-hepatic manifestations of the disease

- Wilson disease SHOULD be included in the differential diagnosis of any child who presents with liver disease, neurologic abnormalities, behavioural changes (treatable condition)

Wilson disease

- Wilson disease may present as fulminant hepatic failure, usually in association with a hemolytic crisis due to the toxic effect of copper on red blood cells.
- Definitive diagnosis requires evaluation of:
- 24-hour urinary copper excretion and
- copper quantification in liver tissue obtained by biopsy
- Genetic test (useful in asymptomatic children of $1^{\text {st }}$ degree relatives)
- Therapy is chelating therapy of the copper with penicillamine, which allows for its excretion into the urine (early diagnosis = better prognosis)

AIH Aubimmune heparitis

- AIH is a hepatic inflammation associated with the presence of circulating autoantibodies against liver cells in the absence of other recognized causes of liver disease
- Other autoimmune diseases may coexist, including: thyroiditis, DM
- Dx:
- High transaminases +
- High autoimmune markers (anti SMA, KLM)
- High serum gamma globulin concentrations
- Liver biopsy
- Rx: Immunosuppressive medications e.g.: steroids....

Ischemic hepatitis

- Ischemic hepatitis results from shock (eg, dehydration), asphyxia, cardio-respiratory arrest, or seizures.
- The disorder is due to hypotension/hypoperfusion to the liver
- Typically, aminotransaminases are elevated in the absence of other markers of severe liver disease.
- Ischemic hepatitis may resemble infectious hepatitis, but it is distinguished easily by rapidly decreasing aminotransaminases levels in the days following the initial insult without increasing coagulopathy or hyperbilirubinemia.

Infiltrative disorders

- Infiltrative disorders of the liver are observed with leukemia, lymphoma, and neuroblastoma (more common than primary liver tumers)
- Primary liver tumors: Hepatoblastoma, hepatocarcinoma, and hemangioendothelioma
- Presentation: hepatomegaly or abdominal distension or mass
- Serum alpha-fetoprotein levels usually are elevated.
- Dx by CT scan or MRI
- Surgical excision of a solitary tumor or radiation/chemotherapy is the treatment of choice.

THE END

QUESTIONS

TABLE 6. Miscellaneous

Physical Findings Associated With Liver Disease

Infants

- Microcephaly: congenital cytomegalovirus, rubella, toxoplasmosis
- Characteristic facies: arteriohepatic dysplasia (Alagille syndrome)
- Cataracts: galactosemia
- Retinal pigmentation and posterior embryotoxon: Alagille syndrome
- Abnormal auscultation of lungs: cystic fibrosis
- Neuromuscular abnormalities (tremors, flaccidity): lipid storage disease, Wilson disease, disorders of oxidative phosphorylation

Children

- Pruritus: chronic cholestasis
- Hemangiomas: hemangiomatosis of the liver
- Kayser-Fleischer rings: Wilson disease
- Glossitis: cirrhosis
- Enlarged kidneys: congenital hepatic fibrosis or polycystic disease
- Arthritis and erythema nodosum: liver disease with chronic inflammatory bowel disease
- Arthritis, acne, fatigue: autoimmune hepatitis

