

The child with polyuria

Dr.Reem Al Khalifah

Head of pediatric endocrinology division
Assistant professor paediatric endocrinology
Health research methodologist

Outline

- Define polyuria
- Differential diagnosis of polyuria
- Able to manage a patient presenting with polyuria

Case

- 2 years old girl previously healthy, presented with frequent urination & drinking water for 2 weeks
- What further history you want to obtain?

What is too much?

• 1 cup 1L 2L 5L

D

Polyuria

Urine output >2L/m²/day

What is your differential diagnosis?

Metabolic

- Diabetes mellitus
- Hypercalcemia
- Hypokalemia

Renal

- Renal tubular acidosis
- Barter syndrome
- Nephrognic diabetes insipidus

CNS

Central diabetes insipidus

Psychogenic

Medications

Diuretics

TYPES OF DIABETES?

Body Function Without Diabetes

Type 1 diabetes

T1DM etiology

It is not caused by:

- X The last weeks- months infection
- X Emotional stress
- X Too much sugar

Stages of T1DM

Symptoms

Polydipsia (Excessive Thirst)

Polyphagia (Excessive Hunger/Increased Appetite)

Involuntary Weight Loss

Diagnosis

Classic symptoms of diabetes or hyperglycemic crisis, with plasma glucose concentration ≥11.1 mmol/L (200 mg/dL)

Fasting plasma glucose ≥7.0 mmol/L (≥126 mg/dL).

2hr OGTT glucose ≥11.1 mmol/L (≥200 mg/dL)

TREATMENT

Glucose monitoring

Continuous glucose monitoring

Continuous glucose monitoring

Insulin type (trade name)	Onset	Peak	Duration
Bolus (prandial) insulins			
 Rapid-acting insulin Aspart (novorapid[®]) Glulisine (apidra[™]) Lispro (humalog[®]) 	10 - 15 min 10 - 15 min 10 - 15 min	1 - 1.5 h 1 - 1.5 h 1 - 2 h	3 - 5 h 3 - 5 h 3.5 - 4.75 h
Short-acting insulins •Regular (humulin®-r) • Regular (novolin®getoronto)	30 min	2 - 3 h	6.5 h
Basal insulins			
Intermediate-acting insulinsNPH (humulin®-n)NPH (novolin®ge NPH)	1 - 3 h	5 - 8 h	Up to 18 h
 Long-acting basal insulin Detemir (levemir*) Glargine (lantus*) Degludec (Tersiba) 	90 min	Not applicabl e	Up to 24 h (glargine 24 h, detemir 16 - 24 h) Degludec up to 72hr

Injection sites

Insulin injection sites:

- Outer arm
- Abdomen
- Hip area
- Thigh

Insulin pump

Sensor for CGM optional extra

Insulin vial to fill reservoir

Reservoir

Insulin Pump

Infusion set before insertion

Infusion set after insertion

Diabetes Management 24/7

DIABETES COMPLICATIONS

ACUTE

Hypoglycemia

70 mg/dl 4 mmol/l

complications of Hypoglycemia

Cognitive, psychological changes (eg, confusion, irritability)

Accidents, Falls

Low health related quality of life

hypoglycemia unawareness

Dementia (elderly)

CV events: Cardiac autonomic neuropathy, MI, arrhythmia

Treatment of Hypoglycemia

- 1 cup of Juice
- Glucose tablets
- Glucagon s.c

ملعقة طعام عسل أو مربى

1۲0 ملل من عصبير البرتقال أو التفاح

۲ مکعب سکر

Acute complications

DIABETIC KETOACIDOSIS

DKA

leading cause of morbidity and mortality in children

Risk factors :

- new-onset diabetes
- Children with poor control
- previous episodes of DKA
- Adolescent
- Children on insulin pumps or long-acting insulin analogs
- Children with psychiatric disorders, and those with difficult family circumstances
- Poor sick day management

Losses of fluids and electrolytes in diabetic ketoacidosis

Average (range) losses per kg			
Water	70 mL (30-100)	≤10 kg* 11-20 kg >20 kg	
Sodium Potassium Chloride Phosphate	6 mmol (5–13) 5 mmol (3–6) 4 mmol (3–9) (0.5–2.5) mmol		

Clinical manifestations of DKA

Dehydration

Tachypnea; deep, sighing (Kussmaul) respiration

Nausea, vomiting, and abdominal pain that may mimic an acute abdominal condition

Confusion, drowsiness, progressive obtundation and loss of consciousness

Diagnosis

Hyperglycemia BG > 11 mmol/L (≈ 200 mg/dL)

Ketonemia and ketonuria

Venous pH< 7.3 or bicarbonate < 15 mmol/L

DKA severity

- Mild: venous pH<7.3 or bicarbonate <15 mmol/L
- Moderate: pH<7.2, bicarbonate <10 mmol/L
- Severe: pH<7.1, bicarbonate <5 mmol/L.

Management

- Airway-breathing-circulation
- If shock> give fluid bolus

Fluid replacement

Deficit + maintenance

DKA severity

For 24 hr

Deficit: Weight X deficit %(based on DKA severity) X 10

Deficit replacement

Type of fluids

NACL	KCI	Glucose	
0.9 % NS	40 mmol/l	D 5 W	
0.45 % NS	60 mmol/l	D 10 W	
		D 12.5 W	

Fluid Basics

- Avoid hypervolemia / rapid osmo correction
- No insulin 1st hr
- No insulin bolus
- No NaHCO₃
- Replace all electrolyte deficit

Monitoring

- Gas
- Electrolytes
- Glucose
- Renal function
- Urine ketones
- Others

Your turn!

- 10 years old girl, has 2 weeks history of polyuria, polydepsia, vomiting for 1 day.
- Glucose 30 mmol/l
- Urine Ketones +4
- Gas: PH= 7.1, Hco3 =4, Co2 =12
- Weight 30 kg

Calculate the required fluids in the first 24hr?

DKA severity

- Mild: venous pH<7.3 or bicarbonate <15 mmol/L
- Moderate: pH<7.2, bicarbonate <10 mmol/L
- Severe: pH<7.1, bicarbonate <5 mmol/L.

Wt 30kg, severe DKA

Maintenance= 1680ml/ 24hr

Deficit: Weight X deficit %(based on DKA severity) X 10

```
    Deficit= 30 X 10 X 10= 3000ml/ 48-72hr
    = 1500 ml/24hr
```

Required fluids in the 1st 24hr= 1680+ 1500
 = 3180ml/24hr
 = 132ml/hr

DKA compilations

- Acute
- Chronic

Risk Factors for Developing Cerebral Edema

- 0.7 to 3.0%
- Younger age (<5 years)
- New-onset diabetes
- High initial serum urea
- Low initial partial pressure or arterial carbon dioxide (pCO2)
- Rapid administration of hypotonic fluids
- IV bolus of insulin
- Early IV insulin infusion (within 1st hour of fluids)
- Failure of serum sodium to rise during treatment
- Use of bicarbonate

Signs and symptoms of cerebral edema

- Headache and slowing of heart rate
- Change in neurological status (restlessness,
- irritability, increased drowsiness, and incontinence)
- Specific neurological signs (e.g., cranial nerve palsies, papilledema)
- Rising blood pressure
- Decreased O2 saturation

Diagnostic criterion:

- 1 Diagnostic criteria
- or
- 2 major criteria
- or
- 1 major and 2 minor criteria
- Signs that occur before treatment should not be considered in the diagnosis of cerebral edema.

Diagnostic Criteria

- Abnormal motor or verbal response to pain
- Decorticate or decerebrate posture
- Cranial nerve palsy (especially III, IV, and VI)
- Abnormal neurogenic respiratory pattern (e.g., grunting, tachypnea, Cheyne–Stokes respiration, apnea)

2 major criteria

or

1 major + 2 minor criteria

Major Criteria

- Altered mentation/fluctuating level of consciousness
- Sustained heart rate deceleration (decrease more than 20 beats/min) not attributable to improved intravascular volume or sleep state
- Age-inappropriate incontinence

Minor criteria

- Vomiting
- Headache
- Lethargy or not easily arousable
- Diastolic blood pressure >90mmHg
- Age < 5 years</p>

Diagnostic Criteria

- Abnormal motor or verbal response to pain
- Decorticate or decerebrate posture
- Cranial nerve palsy (especially III, IV, and VI)
- Abnormal neurogenic respiratory pattern (e.g., grunting, tachypnea, Cheyne–Stokes respiration, apnea)

Treatment

- Initiate treatment as soon as the condition is suspected.
- Reduce the rate of fluid administration by onethird.
- Give mannitol, 0.5–1 g/kg IV over 10–15 min, and repeat if there is no initial response in 30 min to 2 h.
- Hypertonic saline (3%), suggested dose 2.5–5
 mL/kg over 10–15 min
- Move patient to PICU.
- Elevate the head of the bed to 30°.

Diabetes Complications – Key Messages

 Nephropathy, retinopathy, neuropathy and hypertension are relatively rare in pediatric diabetes

 Start Screening after pubertal and 5 years of DM duration.

Diabetes insipidus

Symptoms

- Polyuria
- Polydipsia
- Dehydration
- Irritability
- Growth failure
- Hyperthermia
- Weight loss

Investigations

- **1** Na
- serum osmolality
- Urine osmolality
- Urine Na
- Urine Specific gravity

Water deprivation test 8-10hr

Q1hr:

- serum Na
- serum osmolality
- Urine osmolality
- Urine Na
- Urine Specific gravity
- Weight
- +/- desmopressin injection

Causes

Congenital

Agenesis of the pituitary

Septo-optic dysplasia

Tumor

Craniopharyngioma

Histocytosis

latrogenic

Surgical removal

Radiation

Infectious

Meningitis

Treatment

- Desmopressin
- Free water access

Fluid replacement

Deficit + maintenance + ongoing

Water deficit

For 24 hr

Urine output

Deficit: 0.6X weight X (actual Na-target Na) target Na

SYNDROME OF INAPPROPRIATE ANTIDIURETIC HORMONE

Symptoms

- Anorexia
- Nausea
- Muscle cramps
- Weakness
- Confusion
- Seizure
- Coma

Causes

Tumor

Small cell Lung ca

latrogenic

Postoperative fluid load

 Postoperative pituitary stalk injury

Infectious

Meningitis

GBS

Anti seizure

Medications

Chemotherapy

• Lithium

Investigations

- **Ψ** Na
- serum osmolality
- The osmolality
- Tine Na
- The Urine Specific gravity

Treatment

Free Water restriction

weight =20 Na=120

water excess: -1.7 L

Fluid management

Na= 155

water deficit: 1.28 L

Deficit + maintenance + ongoing

Fluid excess

Deficit: 0.6X weight X (actual Na-target Na) target Na

Case

- A 3-year old boy polyuria/polydipsia since age 10 months
- He drinks about 2.5 to 3 litres of fluid per day
- He gets up twice at night to drink, mother changes dippers 12 times daily
- What is the most likely test to confirm your diagnosis?
 - Serum Glucose
 - Serum Na
 - Blood gas
 - Urine culture

