CRITICAL CARE MEDICINE

Ahmed Alburakan, MD, MSc ,FRCSC , FRCPC Assistant professor & consultant Trauma, acute care surgery & critical care medicine King Saud University

OUTLINE

- Introduction
- What is critical care?
- ICU multidisciplinary team
- Hemodynamic monitoring
- Ventilation
- ICU assessment and documentation
- Who gets ICU admission

Common ICU scenarios

CRITICAL CARE

- Historically, we recognized that the needs of patients with acute, lifethreatening illness or injury could be better treated if they were grouped into specific areas of the hospital.
- Intensive care began in the United States in 1920's, when W.E. Dandy established the first 3-bed neurosurgical ICU at Johns Hopkins Hospital in Baltimore.

CRITICAL ILLNESS

- Acute life threatening conditions that require close and frequent assessment and multi-disciplinary care.
 - Trauma
 - Sepsis
 - Respiratory failure
 - ACE
 - ETC.

CRITICAL CARE UNIT

• A section in the hospital that is equipped to deal with critically ill patients.

- General ICU
- Surgical ICU
- Medical ICU
- Neuro ICU
- ETC.

ADVANTAGES/DISADVANTAGES OF CRITICAL CARE UNIT

- The chief advantage is that it provides better and more organized care
- The main disadvantage is of a hostile environment contributing to anxiety, emotional stress, loneliness, fear and a greater risk of developing nosocomial infections.

ICU MULTIDISCIPLINARY TEAM

- ICU medical team, (consultant, assistants, residents, etc.)
- Nursing, (specialized in critical care, 1:1 ratio ideally)
- Respiratory therapy.
- Dieticians
- Clinical pharmacists
- Physiotherapy
- Occupational therapy.
- Social worker
- Consultation services, (Radiology, ENT, Surgery, Nephrology, etc.)

ICU MULTIDISCIPLINARY TEAM

- Provide advanced care to ICU patients
 - -Multi-disciplinary management plan.
 - -Advanced and tight monitoring of vital signs.
 - -Resuscitation and maintaining vital functions during critical illness.
 - -Provision of life-saving treatment modalities.

HEMODYNAMIC MONITORING

- Monitoring provides an early warning of adverse changes or trends before irreversible damage occurs.
- Monitoring
 - reflects physiologic homeostasis
 - allows prompt recognition of responses to therapeutic
 - interventions
 - allows prompt recognition of adverse changes.
- What is the most important monitor?
 - -Vigilance!

MONITORING MODALITIES

- Vigilant Physicians (Subjective data)
 - Monitors
 - (Visual, Tactile, Auditory, Olfactory)
- Standard Monitoring Equipment (Objective Data)
 - -Pulse Oximetry
 - -Capnography
 - -Body Temperature
 - -ECG
 - -Systemic Blood Pressure

MONITORING THAT REQUIRES NO INSTRUMENTATION

Inspection

- Skin (Is there normal capillary refill? Delayed return suggests abnormality in regional or systemic circulation)

- Palpation
 - Skin (Is the patient warm or cold and clammy)
 - Pulse (Presence/Absence of pulse)
 - Skeletal muscle (Are muscles fasciculating)
- Auscultation
 - Chest (Listen for breath sounds over both lung field, is there paradoxical breathing)
 - Heart (Are sounds muffled, or murmurs present)

NON-INVASIVE HEMODYNAMIC MONITORING

- Noninvasive BP
- Heart Rate, pulses
- Mental Status
- Skin Temperature
- Capillary Refill
- Urine Output

MINIMAL MONITORING STANDARDS

- Oxygenation (inspired gas and saturation of arterial blood (SpO2))
- Ventilation (capnography and clinical assessment)
- Circulation (ECG, arterial blood pressure)
- Temperature
- Neuro-vitals (GCS, mental status)

PULSE OXIMETRY

- Assess the oxygenation of blood
 - Reduced (or deoxygenated) hemoglobin (Bluish)
 - Oxygenated hemoglobin (Red)
- How it works?
 - A probe send light impulses into a finger and collects the light that pass through it.
 - The units estimates the proportion of oxyhemoglobin to reduced hemoglobin
- SpO2 the saturation based on pulse oximetry
- SaO2 the saturation obtained from direct arterial blood sample

PULSE OXIMETRY

- Acceptable readings depend on the clinical condition, and trends must be considered.
- Limitations:

-Cannot differentiate between different forms of hemoglobin.

-Environmental interference: vibration at 0.5-3.5 Hz, excessive movement and perhaps high level of ambient light, including infrared heat lamps.

-Cold hands

- -Poor perfusion.
- -Nail polish.
- -Intravascular dyes

ELECTROCARDIOGRAM (ECG)

- Provides information on
 - cardiac arrhythmias
 - myocardial ischemia/infarction
 - electrolyte changes, particularly potassium
- ECG is not a measure of heart function
- ECG reflects only the electrical activities occurring in the heart

ECG

- Lead V5 is the most sensitive lead for detecting ischemia
- Lead II is the most sensitive lead for detecting arrhythmias
- P waves are best seen on Lead II
 - best to observe the cardiac rhythm.

BLOOD PRESSURE (BP) MONITORING

- BP monitoring is commonly performed either:
 - Indirectly noninvasive cuff around extremity
 - Directly inserting catheter into artery

BLOOD PRESSURE (BP) MONITORING

- Systolic Blood Pressure (SBP)
 - Pressure which ejected blood will overcome to perfuse vessels distally
- Diastolic Blood Pressure (DBP)
 - Pressure under which the blood flow will be laminar
- Pulse Pressure = SBP DBP
- Mean Arterial Blood Pressure (MAP)
 - -Time weighted average of arterial pressures during a pulse cycle

 $-MAP = [SBP + (2 \times DBP)] / 3$

NON-INVASIVE BP MONITORING

- Mechanical deformation from the blood pressure cuff of an artery leads to the creation of Korotkoff sounds result from turbulent flow
- The appearance of the first Korotkoff sound is the systolic blood pressure
- The disappearance of the Korotkoff sound signals the diastolic blood pressure.

NON-INVASIVE BP MONITORING

- American Heart Association recommends
 - Bladder width: approximately 40% of the circumference of the extremity
 - Bladder Length: sufficient to circle at least 60% of the extremity
- Falsely low estimates occur:
 - after quick deflation
 - when the extremity is above the heart
 - when cuffs are too large
- Falsely high estimates occur when:
 - cuffs are applied too loosely
 - when the extremity is below heart level
 - when cuffs are too small

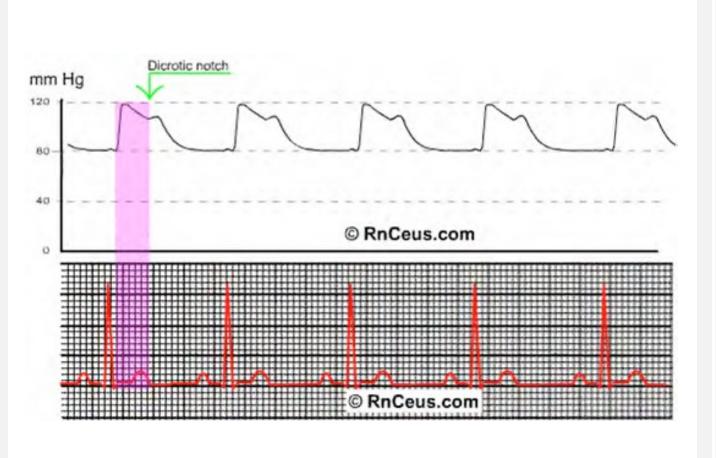
NON-INVASIVE BP MONITORING PROBLEMS

- Hematomas results due to increase venous pressure after failure to deflate the cuff
- Delayed cuff deflation can result from shivering and tremors
- Ulnar neuropathy can occur due to compression of the ulnar nerve

INVASIVE BP MONITORING

- Provide beat to beat blood pressure reading (real time)
- Reliable access for analysis of arterial blood gases, pH, and/or electrolytes
- New technologies enable cardiac output estimation from invasive BP monitoring

INVASIVE BP MONITORING


- Expected rapid changes in hemodynamic stability (shock)
- Induced hypotension, acute hypotension
- Inability to achieve noninvasive monitoring
- Use of Vasoactive drugs
- Frequent blood gas monitoring.

INVASIVE BP MONITORING

- Radial artery is the most frequent site
- Can be at femoral artery or brachial artery
- Dorsalis pedis rarely.

INVASIVE BP MONITORING

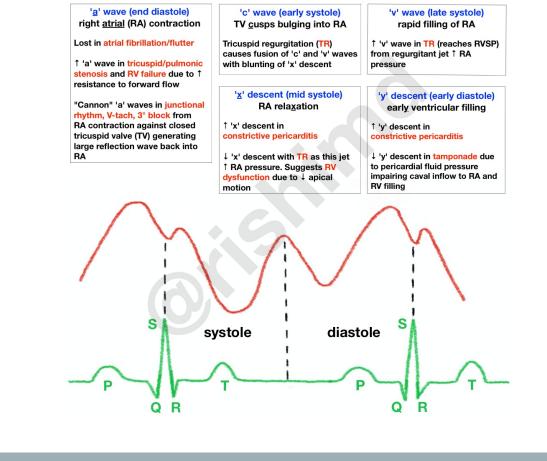
- Rate of upstroke indicates contractility
- Rate of the downstroke indicates peripheral vascular resistance
- Dicrotic notch reflects the closure of the aortic valve
- The farther out the dicrotic notch the lower the SVR or peripheral vascular resistance

INVASIVE BP MONITORING: COMPLICATIONS

- Hematoma
- Bleeding
- Vasospasm
- Arterial Thrombosis
- Distal Emboli
- Infection and Necrosis
- Air embolism
- Unintentional intraarterial drug injection
- Pseudoaneurysm
- Damage to adjacent nerves

CENTRAL VENOUS ACCESS

- Monitoring central venous pressure (CVP)
- Rapid administration of fluid to treat hypovolemia and shock (i.e. acute hemorrhaging)
- Infusions of drugs
- Long-term IV Feeding (i.e. Hyperalimentation)
- Insertion of Transcutaneous pacing leads
- Venous Access in patients with poor peripheral veins


CENTRAL VENOUS PRESSURE

- Central venous pressure parallels right atrial pressure.
- Normal pressures might range from -2 to 12 mmHg in a spontaneously breathing patient.
- Pressures of 6 to 15 mmHg (or more with high peak inspiratory pressures) can be expected on mechanical ventilation.
- The shape of the central venous waveform corresponds to the events of the cardiac contractions.

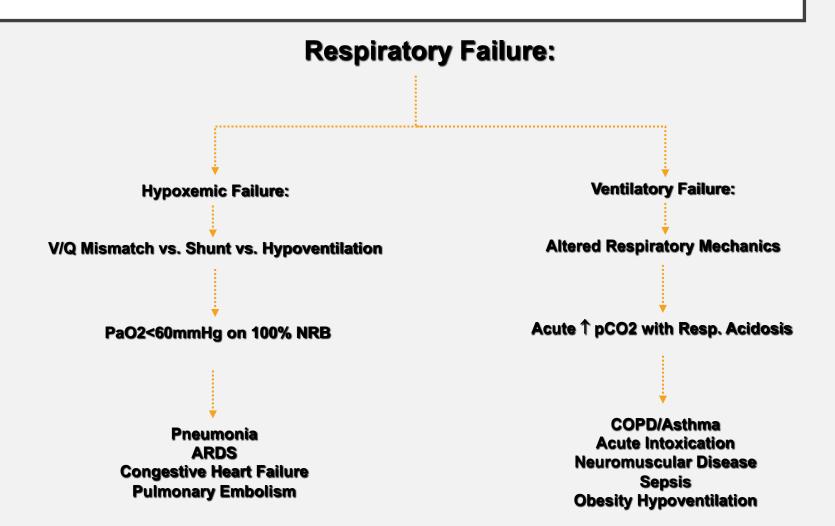
CENTRAL VENOUS PRESSURE

Three peak (a,c, and v waves) and two descents (x,y) can be seen in a normal CVP waveform.

RA/CVP WAVEFORM INTERPRETATION

ELEVATED CENTRAL VENOUS PRESSURE

- Tricuspid Stenosis
- Tricuspid Regurgitation
- Pulmonary Hypertension
- Mitral Stenosis
- Mitral Regurgitation
- LV Failure
- Volume Overload
- Cardiac Tamponade
- Arrhythmias
- Increased PVR (Anxiety, Pain)


MECHANICAL VENTILATION

 Delivery of ventilation and supplemental Oxygen with a mechanical ventilator to support a patient experiencing Respiratory Failure.

Fig - A mechanical ventilator for intensive care, with the external circuit

MECHANICAL VENTILATION: INDICATIONS

RESPIRATORY FAILURE

Arterial Blood Gas Abnormalities:

- Hypoxemia:

-PaO2<60mmHg or O2 sat < 90% on 100% NRB

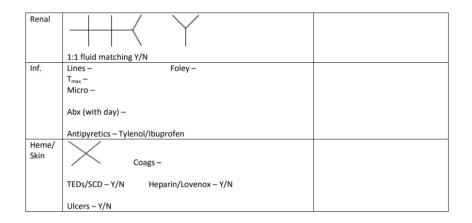
- Hypercapnea:

-Acute: pH △ 0.08 for pCO2 △ 10mmHg -Chronic: pH △ 0.03 for pCO2 △ 10mmHg

- Clinical Impression:
 - -Use of Accessory Muscles
 - -Inability to Speak in Full Sentences
 - -Paradoxical Respirations
 - -Altered Mentation
 - -Cardiopulmonary Arrest: When Respirations and Pulse Cease

STARTING MECHANICAL VENTILATION

- I. Need a Conduit:
 - Endotracheal Tube: Invasive Mechanical Ventilation
 - Face Mask: Noninvasive Mechanical Ventilation (NPPV)
- 2. Deliver Cyclical Positive-Pressure 'Breaths'.
- 3. Provide Supplemental Oxygen.
- 4. Minimize Complications.


ASSESSMENT OF A PATIENT IN THE ICU

- The Flow Sheet: Recording round the clock information of different organ systems.
 - -Vital signs
 - -Neurological Status
 - -Haemodynamic Parameters
 - -Ventilation settings
 - -Respiratory parameters
 - -Input/output
 - -Laboratory Data
 - -Medications

ASSESSMENT OF A PATIENT IN THE ICU

- Systematic daily oriented team rounds with accurate transmission and discussion of all clinical information from head to toe.
 - -Identification/problem list
 - -Major events during the last 24 hrs
 - -By system approach; CNS, Cardiovascular, Respiratory, GI, Renal/metabolic, Heme/ID, tubes, etc.
- Documented note containing problem list and plan for all of the above.

Name &	Room No:		Things to do/ Plan	
Hospital	Day #	ICU Day #		
Vitals:	Temp	Р	R	
	BP	Pulse Ox:		
Neuro	EVD @			
	24 h output			
	ICP (last 24h			
	Imaging (last 24h)			
	TCD			
	TCD			
	EEG			
Resp	Vent setting	ļs		
	ABG			
	Secretions: scant/copious; thin/thick; white/putrid			
	CXR: ETT -			
	Lung parend	:hyma -		
CVS	1/0	Balance	Wt:	
	Fluids			
	Labs			
	Echo			
GI/	TF: Goal -	ml/h; Type -	Residuals (vol – 24h) -	
Endo	BM (last 24h) Y/N GI Ppx – Y/N			
	Labs: LFT	AST	ALT	
	BG -	SSI—q h		
	Prealbumin			

ICU NOTE

WHO GET ICU ADMISSION

- Acute life-threatening illnesses which are potentially reversible
- Acute illnesses with potential and likely to occur life-threatening complications
- Monitoring of vital parameters of patients with symptoms/signs that suggest the possibility of an evolving life-threatening illness.

COMMON SCENARIOS IN ICU

- A 73 year old lady with a history of ischemic heard disease, HTN, DM II presents to the ED with altered mental status. She is febrile to 39.4, hypotensive (BP 80/40) with a widened pulse pressure, tachycardic (HR 121), with warm extremities and decreased urine output.
- How would you manage this patient?

SEPTIC SHOCK

- ICU admission
- Hemodynamic monitoring.
- Resuscitation with fluids, vasopressors.
- Pan cultures, looking for source of sepsis
- Treatment and reversal of condition. (antibiotics, drainage, etc.)
- Monitoring and prevention of complications. (respiratory failure, ARDS, multiorgan failure, etc.)

COMMON SCENARIOS IN ICU

- A 71 year old gentleman with a history of ischemic heard disease, HTN, DM II presents to the ED with altered mental status and slurred speech since morning. His BP is 190/90, HR 111/min. On exam he has right facial drop, slurred speech and left sided arm weakness.
- How would you manage this patient?

STROKE

- ICU admission
- Hemodynamic and neurovitals monitoring.
- Blood pressure control.
- Workup of possible stroke, type, risk factors etc.
- Monitoring and prevention of complications. (hemorrhage, re stroke, seizures, respiratory failure, etc)

COMMON SCENARIOS IN ICU

 A 63 year old lady with a history of DM, IHD and previous stroke with no deficit has just had a Whipple procedure for pancreatic carcinoma. The surgery lasted for 6 hours and was complicated with major bleeding requiring multiple transfusions.

• How would you manage this patient?

BLEEDING

- ICU admission
- Hemodynamic monitoring.
- Resuscitation with fluids, blood products, and vasopressors.
- Monitoring and prevention of complications.
 - recurrent bleeding.
 - leak
 - compartment syndrome
 - fluid overload
 - Post op acute coronary syndrome.

SEVEN 'C'S OF CRITICAL CARE

- Compassion
- **C**ommunication (with patient and family).
- Consideration (to patients, relatives and colleagues) and avoidance of Conflict.
- **C**omfort : prevention of suffering
- **C**arefulness (avoidance of injury)
- **C**onsistency
- Closure (ethics and withdrawal of care).

