

Department of Medicine MED 442 Lectures

Approach to Common Electrolytes and Acid-Base Disorders: A Case Discussion

Ahmad Raed Tarakji, MD, FRCPC, PGDipMedEd, FACP, FASN, FNKF

Assistant Professor

Nephrology Unit, Department of Medicine, King Saud University Consultant Internist & Nephrologist, King Khalid University Hospital

Notes by Jumana Alghtani

There are 2 extra pages I've added one explaining what is required from us in the exam and the other is solving the case briefly

In the OSCE you will be expected to do the following:

- 1- is it acidemia or Alkalemia > by looking at the PH
- 2- is it metabolic or respiratory > by looking at PCO2
- 3- look for compensation > by looking at [HCO3]
- 4- if metabolic look for the anion gap and list the DDx if either high or normal

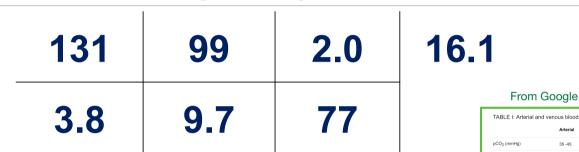
Intended Learning Outcomes:

By the end of the lecture the student should be able to:

- 1. Interpret Arterial Blood Gas report
- 2. Recognize Acidemia/Acidosis and Alkalemia/Alkalosis
- 3. Calculate Respiratory Compensation for metabolic disturbances
- 4. Calculate Anion Gap with correction for serum Albumin
- 5. Recognize the difference between volume status disturbance and dysnatremia
- 6. Formulate a management plan for DKA

131 135 - 145	99 96 - 104	2.0	16.1
3.8 3.6 - 5.2	9.7 23 - 29	77	

- 1. Please interpret each component of this chemistry lab report.
- 2. What else you need to know? (History? Exam? Lab?)


BMP: Basic Metabolic Panel

Na ⁺	CI-	Urea	Gluc
K ⁺	TCO ₂	Creat	

Venous vs. Arterial vs. Capillary Blood Gases

VBG: 7.24/22.5/47.6/9

VBG: pH/pCO₂/pO₂/HCO3⁻/BE

Venous Gas **VBG: 7.24/22.5/47.6/9** 22-26 PH PCO2 PO2 [HCO3]

- What is Henderson equation?
- 4. What is the difference between pCO₂ and Total CO₂ (TCO₂ or "CO₂")?
 TCO2 measures the CO2 in every compound that contains CO2 in slide 9

 5. What is the difference between Total CO₂ and [HCO₃-]?
 The value of TCO2 has to be close to HCO3 with difference less than 2, if the difference is more then request re-

41 - 51

40-53

30 -40

Ricarbonate (mmol/I

80-100

pO₂ (mmHa)

Let's solve it;

- 1- it's Acidemia.
- 2- metabolic acidosis because the CO2 is low not high and the HCO3 is low.
- 3- compensation of metabolic acidosis we use **Winter's formula** of expected pCO2 = 1.5 [HCO3] +8 = the answer +/-2 1.5 [10] +8 = 23 +/-2 = 21_25 >>> so in this case there is full respiratory compensation.
- 4- find the **anion gap** to classify the metabolic acidosis by using this formula= [Na] [cl] + [HCO3] = 131 99 + 9.7 = 22 >> high anion gap metabolic acidosis with full respiratory compensation.

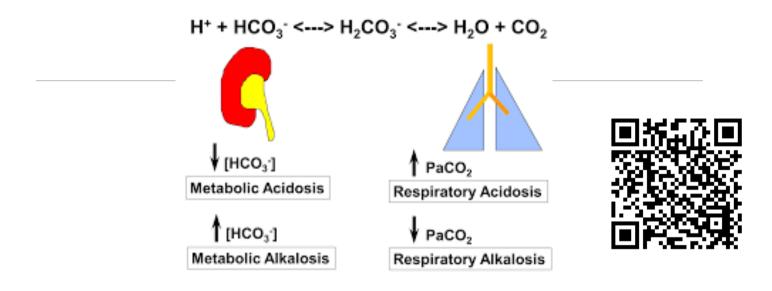
Normal Increased Anion Gap Anion Gap √ Diarrhea ✓ Methanol 5- the DDX for high anion gap are: MUD PILES -Uremia Renal DKA Paraldehyde Iron Lactate *Note: the Dr. used the value of TCO2 in place of HCO3 in every calculation since the Ethylene alycol difference is less than 2, there is no problem ✓ Salicyclates

From page 22

General notes:

- the lung compensate to any metabolic disorder within minutes while the kidneys take days to compensate for respiratory disorders.
- There is a limit of how much the lungs can compensate and there is NO FULL compensation, so if the PH in normal range suspect Mixed disorders.

What is Henderson equation?


$$H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO3^-$$

$$[H^+] = 24 \times pCO2$$
 $[HCO3^-]$

40 (nmol/L) = 24 x [40 (mmHg)/24 (mmol/L)]

pH = pK + log
$$\frac{[HCO_3^-]}{[PCO_2 \times 0.03]}$$

= 6.1 + log $\frac{24 \text{ mEq/L}}{(40 \times 0.03)}$
= 6.1 + log $\frac{24 \text{ mEq/L}}{(1.2 \text{ mEq/L})}$
= 6.1 + log $\frac{20}{1}$ (20:1 ratio)
= 6.1 + 1.3
= 7.4

https://media.lanecc.edu/users/driscolln/RT127/Softchalk/Acid_Base_Lesson/Acid_Base_Lesson5.html

Hamilton, P. K., Morgan, N. A., Connolly, G. M., & Maxwell, A. P. (2017). Understanding Acid-Base Disorders. The Ulster medical journal, 86(3), 161–166.

What is Henderson equation?

$$H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO3^-$$

Total
$$CO_2 = [CO_2] + [H_2CO_3] + [HCO3^-]$$

Venous Total CO₂ > Arterial [HCO3⁻] by 1.5-2 mmol/L

Internally consistent data!

Metabolic vs. Respiratory Disorders

$$H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO3^-$$

$$[H^+] = 24 \text{ x } \underline{pCO2}$$

If there is CO2 disturbance, initially we see some HCO3 compensation (not full) from the equation itself shifting to the right not form the kidneys b/c it takes days .. so if we see higher compensation(≈28) we know that the problem has been going for days

6. Why do we have two metabolic compensations for respiratory disorders?

Metabolic vs. Respiratory Disorders

$$H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO3^-$$

$$[H^+] = 24 \times \frac{pCO2}{[HCO3^-]} \qquad \text{Metabolism & Kidneys}$$

6. Why do we have two metabolic compensations for respiratory disorders?

Primary disorder	Compensatory response
Metabolic acidosis	PCO ₂ =1.5 X (HCO ₃ ⁻) + 8 +/_ 2[Winter's formula]
Metabolic alkalosis	0.6 mm ↑ pCO₂ per 1.0 mEq/L ↑ HCO₃・
Acute respiratory acidosis	1 mEq/L ↑ HCO ₃ · per 10 mm ↑ pCO ₂
Chronic respiratory acidosis	3.5 mEq/L ↑ HCO ₃ per 10 mm ↑ pCO ₂
Acute respiratory alkalosis	2 mEq/L ↓ HCO ₃ - per 10 mm ↓ pCO ₂
Chronic respiratory alkalosis	5 mEq/L ↓ HCO ₃ · per 10 mm ↓ pCO ₂

https://www.grepmed.com/images/1324/compensation-respiratory-nephrology-metabolic-diagnosis-alkalosis-acidbase

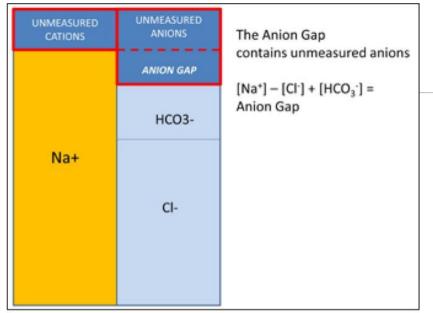
131	99	2.0	16.1
3.8	9.7	77	

VBG: 7.24/22.5/47.6/9

7. What is the acid-base status for this patient?

	131	99	2.0	16.1
_	3.8	9.7	77	

VBG: 7.24/22.5/47.6/9

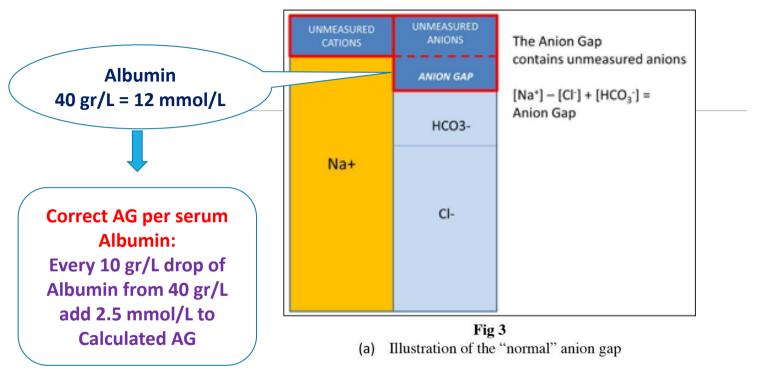

Winter's Formula: Expected pCO2 = 1.5[10] + 8(+/-2) = 23 +/-2 mmHg

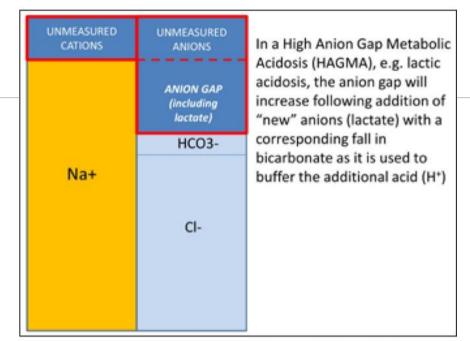
Metabolic Acidosis with full Respiratory compensation

131	99	2.0	16.1
3.8	9.7	77	

VBG: 7.24/22.5/47.6/9

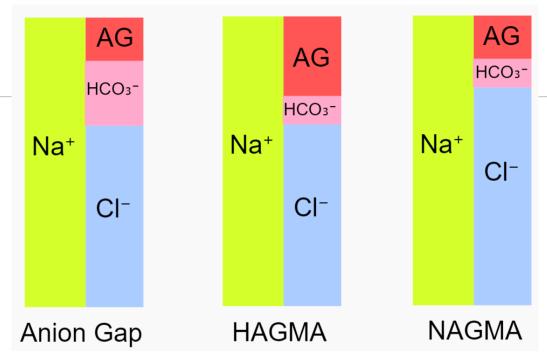
8. What type of Metabolic Acidosis does he have?


Normal AG = 140 - (104 + 24) = 12 mmol/L (Unmeasured Anions)


Fig 3

a) Illustration of the "normal" anion gap

Hamilton, P. K., Morgan, N. A., Connolly, G. M., & Maxwell, A. P. (2017). Understanding Acid-Base Disorders. *The Ulster medical journal*, 86(3), 161–166.



Hamilton, P. K., Morgan, N. A., Connolly, G. M., & Maxwell, A. P. (2017). Understanding Acid-Base Disorders. *The Ulster medical journal*, 86(3), 161–166.

(b) High anion gap present in a metabolic acidosis

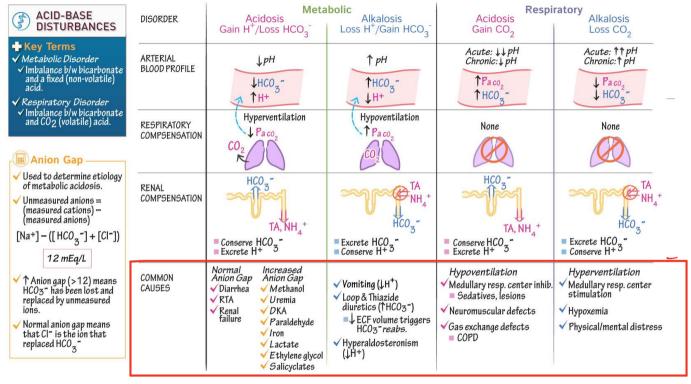
Hamilton, P. K., Morgan, N. A., Connolly, G. M., & Maxwell, A. P. (2017). Understanding Acid-Base Disorders. The Ulster medical journal, 86(3), 161–166.

Dr. Agnibho Mondal / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)

	131	99	2.0	16.1
_	3.8	9.7	77	

VBG: 7.24/22.5/47.6/9, Albumin 38

AG = 131 - (99 + 9.7) = 22 mmol/L

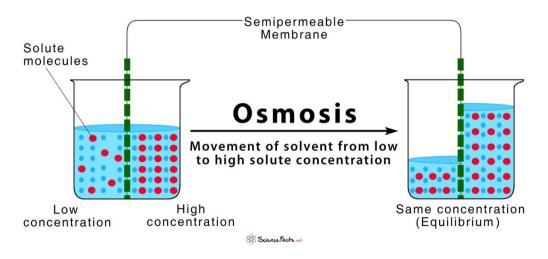

Normal AG = 12 mmol/L (Unmeasured Anions)

	131	99	2.0	16.1 Higher Glucose
Pt. In DKA there is no insulin so the potassium will	3.8	9.7	77	will increase the osmolality diluting Na =
shift to the extracellular leading to false	VB	G: 7.24/	22.5/47.	hyperosmolar hyponatremia

/.Z7/ZZ.J/7/.U/J

norma K reading

High Anion Gap Metabolic Acidosis with full Respiratory compensation


https://drawittoknowit.com/course/physiology/acid-base/acid-base-balance/1326/alkalosis-and-acidosis

131	99	2.0	16.1
3.8	9.7	77	

9. What type of hyponatremia does he have? And why?

ECF and ICF compartments are in osmotic equilibrium

ICFosm = ECFosm = Posm

https://www.sciencefacts.net/osmosis.html

Correction of Serum [Na⁺] for Hyperglycemia

✓ Every 5.5 mmol/L increase in serum Glucose from 5.5 mmol/L add 2.4 mmol/L to measured serum [Na⁺]

- \checkmark Gluc 16.1 mmol/L → 16.1-5.5 = 10.6 mmol/L
- ✓ So (10.6/5.5) x 2.4 = 1.92 x 2.4 = 4.6 mmol/L
- ✓ Corrected [Na⁺] = 131 + 4.6 = 135.6 mmol/L

Spasovski et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol Dial Transplant (2014) 0: 1–39.

131	99	2.0	16.1
 3.8	9.7	77	

10. What is the difference between measured serum osmolarity and calculated serum osmolality? And what is serum osmol gap?

Plasma OsmolaRity vs. Plasma OsmolaLity:

- \checkmark Calculated Posm (mOsm/L) = 2 x [SNa⁺](mmol/L) + Gluc (mmol/L) + Urea (mmol/L)
 - $\sqrt{\text{Calculated Posm}}$ = (2 x 140) + 5 + 3 = **288 mOsm/L Plasma**
 - ✓ Bulk of Plasma osmolarity from [Na⁺]
- ✓ Measured Posm = 286 mOsm/Kg Water

- √1 L of Plasma (Solution) ≠ 1 L of Water (Solvent)
- √1 L Normal Saline:
 - ✓ Calculated OsmolaRity = 308 mOsm/L Solution
 - ✓ Measured OsmolaLity = 286 mOsm/kg Water

Finfer, S., Myburgh, J. & Bellomo, R. Intravenous fluid therapy in critically ill adults. Nat Rev Nephrol 14, 541–557 (2018).

Plasma OsmolaRity vs. Plasma OsmolaLity:

✓ Calculated Posm (mOsm/L) = 288 mOsm/L Plasma

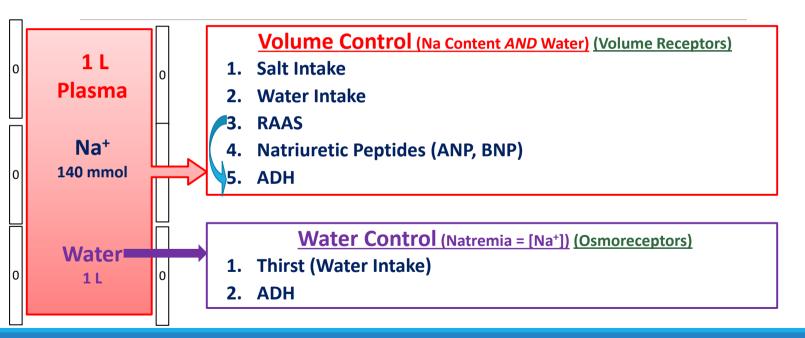
✓ Measured Posm = 286 mOsm/Kg Water

✓ Osmol Gap = Measured Posm – Calculated Posm (up to 10 mOsm)

✓ Unmeasured osmoles (Usually alcohols!)

131	99	2.0	16.1
3.8	9.7	77	

11. What is the difference between dysnatremia and volume status disturbance? And what are their controlling systems and their interaction?

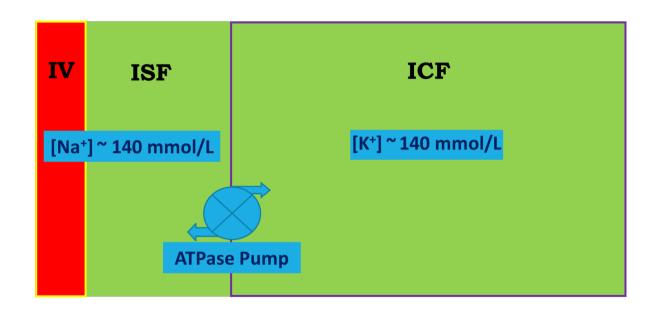

Body Volume control vs. Body Water Balance control

✓ Volemia ~ Blood volume → ECF Volume → Total Body Volume

√1 L Plasma = 1 L of water + 140 mmol of [Na⁺]

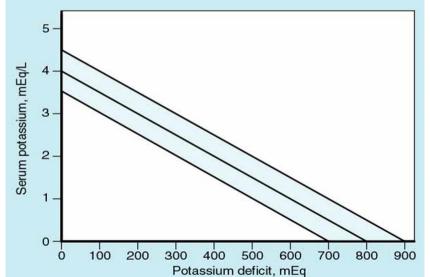
- ✓ Sodium Content ≠ Sodium Concentration
 - ✓ Sodium Content = Volume = Sodium Balance
 - ✓ Sodium Concentration = Natremia = Water Balance

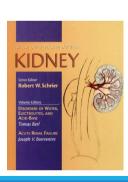
Sodium Content (Volume) vs. Sodium Concentration (Natremia)


131	99	2.0	16.1
3.8	9.7	77	

Corrected
$$[Na^+] = 131 + 4.6 = 135.6 \text{ mmol/L}$$

Dilutional hyponatremia with hypovolemic hyponatremia


131	99	2.0	16.1
3.8	9.7	77	


12. What is the potassium balance for this patient?

Potassium Deficit in relation to Serum SK⁺

	131	99	2.0	16.1
_	3.8	9.7	77	

13. What are the principles of Diabetic Ketoacidosis treatment?

Intended Learning Outcomes:

At the end of this lecture you should be able to:

- 1. Interpret Arterial Blood Gas report
- 2. Recognize Acidemia/Acidosis and Alkalemia/Alkalosis
- 3. Calculate Respiratory Compensation for metabolic disturbances
- 4. Calculate Anion Gap with correction for serum Albumin
- 5. Recognize the difference between volume status disturbance and dysnatremia
- 6. Formulate a management plan for DKA

Thank You!

Questions?