

Department of Medicine MED 442 Lectures

Approach to Common Electrolytes and Acid-Base Disorders: A Case Discussion

Ahmad Raed Tarakji, MD, FRCPC, PGDipMedEd, FACP, FASN, FNKF

Assistant Professor Nephrology Unit, Department of Medicine, King Saud University Consultant Internist & Nephrologist, King Khalid University Hospital

> October 15, 2020 atarakji@ksu.edu.sa

1. Please interpret each component of this chemistry lab report.

2. What else you need to know? (History? Exam? Lab?)

BMP: Basic Metabolic Panel

Na+	CI-	Urea	Gluc
K+	TCO ₂	Creat	

Venous vs. Arterial vs. Capillary Blood Gases

VBG: 7.24/22.5/47.6/9

VBG: pH/pCO₂/pO₂/HCO3⁻/BE

131	99	2.0	16.1
3.8	9.7	77	

VBG: 7.24/22.5/47.6/9

- 3. What is Henderson equation?
- 4. What is the difference between pCO₂ and Total CO₂ (TCO₂ or "CO₂")?
- 5. What is the difference between Total CO₂ and [HCO₃⁻]?

What is Henderson equation?

$H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO3^-$

[H⁺] = 24 x <u>pCO2</u> [HCO3⁻]

40 (nmol/L) = 24 x [40 (mmHg)/24 (mmol/L)]

 $pH = pK + log [HCO_3^-]$ [PCO₂ x 0.03] = 6.1 + log 24 mEq/L (40 x 0.03) = 6.1 + log 24 mEq/L (1.2 mEq/L) $= 6.1 + \log 20$ (20:1 ratio) 1 = 6.1 + 1.3= 7.4

https://media.lanecc.edu/users/driscolln/RT127/Softchalk/Acid_Base_Lesson/Acid_Base_Lesson5.html

Hamilton, P. K., Morgan, N. A., Connolly, G. M., & Maxwell, A. P. (2017). Understanding Acid-Base Disorders. *The Ulster medical journal*, *86*(3), 161–166.

What is Henderson equation?

$H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO3^-$

Total $CO_2 = [CO_2] + [H_2CO_3] + [HCO3^-]$

Venous Total CO₂ > Arterial [HCO3⁻] by 1.5-2 mmol/L

Internally consistent data!

Metabolic vs. Respiratory Disorders

$H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO3^-$

[H⁺] = 24 x <u>pCO2</u> [HCO3⁻]

6. Why do we have two metabolic compensations for respiratory disorders?

October 15, 2020

6. Why do we have two metabolic compensations for respiratory disorders?

Acid Base Disorders

Primary disorder	Compensatory response
Metabolic acidosis	PCO ₂ =1.5 X (HCO ₃ ⁻) + 8 +/_ 2[Winter's formula]
Metabolic alkalosis	0.6 mm [↑] pCO ₂ per 1.0 mEq/L [↑] HCO ₃ [•]
Acute respiratory acidosis	1 mEq/L [↑] HCO ₃ [•] per 10 mm [↑] pCO ₂
Chronic respiratory acidosis	3.5 mEq/L [↑] HCO ₃ [•] per 10 mm [↑] pCO ₂
Acute respiratory alkalosis	2 mEq/L \downarrow HCO ₃ · per 10 mm \downarrow pCO ₂
Chronic respiratory alkalosis	5 mEq/L↓ HCO ₃ [•] per 10 mm↓ pCO ₂

https://www.grepmed.com/images/1324/compensation-respiratory-nephrology-metabolic-diagnosis-alkalosis-acidbase

131	99	2.0	16.1
3.8	9.7	77	

VBG: 7.24/22.5/47.6/9

7. What is the acid-base status for this patient?

131	99	2.0	16.1
3.8	9.7	77	

VBG: 7.24/22.5/47.6/9

Winter's Formula: Expected pCO2 = 1.5 [10] + 8 (+/- 2) = 23 +/- 2 mmHg

Metabolic Acidosis with full Respiratory compensation

131	99	2.0	16.1
3.8	9.7	77	

VBG: 7.24/22.5/47.6/9

8. What type of Metabolic Acidosis does he have?

Fig 3 (a) Illustration of the "normal" anion gap

Hamilton, P. K., Morgan, N. A., Connolly, G. M., & Maxwell, A. P. (2017). Understanding Acid-Base Disorders. *The Ulster medical journal*, *86*(3), 161–166.

Hamilton, P. K., Morgan, N. A., Connolly, G. M., & Maxwell, A. P. (2017). Understanding Acid-Base Disorders. *The Ulster medical journal*, *86*(3), 161–166.

(b) High anion gap present in a metabolic acidosis

Hamilton, P. K., Morgan, N. A., Connolly, G. M., & Maxwell, A. P. (2017). Understanding Acid-Base Disorders. *The Ulster medical journal*, *86*(3), 161–166.

131	99	2.0	16.1
3.8	9.7	77	

VBG: 7.24/22.5/47.6/9, Albumin 38 AG = 131 – (99 + 9.7) = 22 mmol/L Normal AG = 12 mmol/L (Unmeasured Anions)

131	99	2.0	16.1
3.8	9.7	77	

VBG: 7.24/22.5/47.6/9

High Anion Gap Metabolic Acidosis with full Respiratory compensation

https://drawittoknowit.com/course/physiology/acid-base/acid-base-balance/1326/alkalosis-and-acidosis

131	99	2.0	16.1
3.8	9.7	77	

9. What type of hyponatremia does he have? And why?

ECF and ICF compartments are in *osmotic equilibrium* ICFosm = ECFosm = Posm

https://www.sciencefacts.net/osmosis.html

Correction of Serum [Na⁺] for Hyperglycemia

Every 5.5 mmol/L increase in serum Glucose from 5.5 mmol/L add
2.4 mmol/L to measured serum [Na⁺]

✓ Gluc 16.1 mmol/L → 16.1-5.5 = 10.6 mmol/L

✓ So (10.6/5.5) x 2.4 = 1.92 x 2.4 = 4.6 mmol/L

✓Corrected [Na⁺] = 131 + 4.6 = 135.6 mmol/L

Spasovski et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol Dial Transplant (2014) 0: 1–39.

131	99	2.0	16.1
3.8	9.7	77	

10. What is the difference between measured serum osmolarity and calculated serum osmolality? And what is serum osmol gap?

Plasma OsmolaRity vs. Plasma OsmolaLity:

Calculated Posm (mOsm/L) = 2 x [SNa⁺](mmol/L) + Gluc (mmol/L) + Urea (mmol/L)

- ✓ Calculated Posm = (2 x 140) + 5 + 3 = 288 mOsm/L Plasma
- ✓ Bulk of Plasma osmolarity from [Na⁺]

Measured Posm = 286 mOsm/Kg Water

✓1 L of Plasma (Solution) ≠ 1 L of Water (Solvent)

✓1 L Normal Saline:

Calculated OsmolaRity = 308 mOsm/L Solution

Measured OsmolaLity = 286 mOsm/kg Water

Finfer, S., Myburgh, J. & Bellomo, R. Intravenous fluid therapy in critically ill adults. Nat Rev Nephrol 14, 541–557 (2018).

Plasma OsmolaRity vs. Plasma OsmolaLity:

Calculated Posm (mOsm/L) = 288 mOsm/L Plasma

Measured Posm = 286 mOsm/Kg Water

Solution of the second seco

Unmeasured osmoles (Usually alcohols!)

131	99	2.0	16.1
3.8	9.7	77	

11. What is the difference between dysnatremia and volume status disturbance? And what are their controlling systems and their interaction?

Body Volume control vs. Body Water Balance control

✓ Volemia ~ Blood volume \rightarrow ECF Volume \rightarrow Total Body Volume

 \checkmark 1 L Plasma = 1 L of water + 140 mmol of [Na⁺]

Sodium Content ≠ Sodium Concentration
Sodium Content = Volume = Sodium Balance
Sodium Concentration = Natremia = Water Balance

Sodium Content (Volume) vs. Sodium Concentration (Natremia)

131	99	2.0	16.1
3.8	9.7	77	

Corrected [Na⁺] = 131 + 4.6 = 135.6 mmol/L

Dilutional hyponatremia with hypovolemic hyponatremia

131	99	2.0	16.1
3.8	9.7	77	

12. What is the potassium balance for this patient?

Potassium Deficit in relation to Serum SK⁺

131	99	2.0	16.1
3.8	9.7	77	

13. What are the principles of Diabetic Ketoacidosis treatment?

Intended Learning Outcomes:

At the end of this lecture you should be able to:

- 1. Interpret Arterial Blood Gas report
- 2. Recognize Acidemia/Acidosis and Alkalemia/Alkalosis
- 3. Calculate Respiratory Compensation for metabolic disturbances
- 4. Calculate Anion Gap with correction for serum Albumin
- 5. Recognize the difference between volume status disturbance and dysnatremia
- 6. Formulate a management plan for DKA

Jhank You!

Questions?