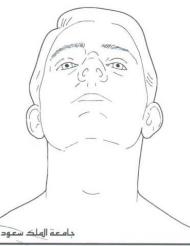
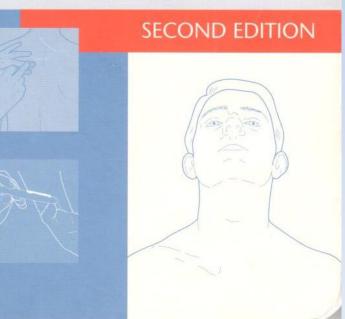
Approach to Chronic Kidney Disease

Prof. Jamal Al Wakeel


Professor of Internal Medicine, Nephrology Consultant Nephrology Unit, Department of Medicine

تأليف نيکولاس ج. تالي سيمون أوکونر

تر جمة أ.د. جمال بن صالح الوكيل


النشر العلمي والمطابع

NICHOLAS J TALLEY SIMON O'CONNOR

POCKET CLINICAL EXAMINATION

Chronic Kidney Disease

Objective

- Epidemiology of CKD
- Definition of CKD
- Classification
- Symptoms, signs and complications
- Management of CKD

What is the prevalence of chronic kidney disease?

- a. From 1 % to 3 %
- b. From 10% to 16%
- c. From 5 % to 8%
- d. Age dependent

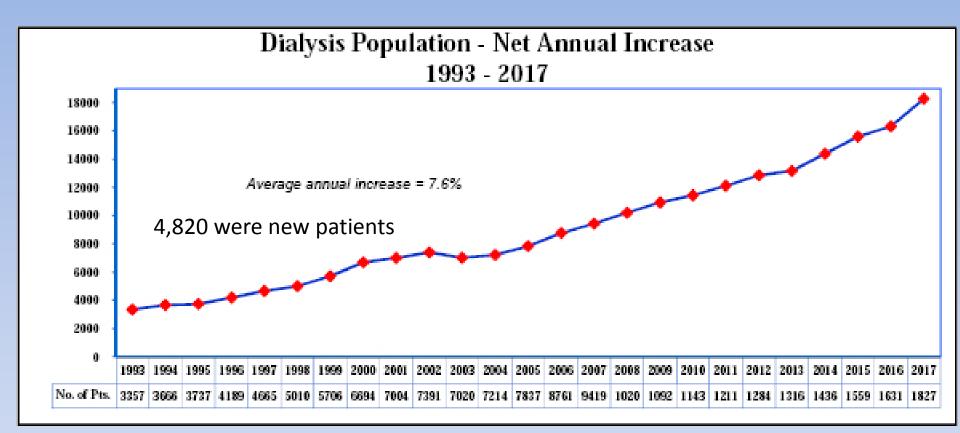
Prevalence of CKD

- CKD in aged ≥20 yrs is >10% -16%
- The prevalence of CKD increases with age:
- 4% at age 29-39 y
- 47% at age >70 y
- The majority of cases are stage 3
- mortality in patients with CKD was 56% greater than that in patients without CKD.
- The 5-year survival rate for a patient undergoing longterm dialysis in the United States is approximately 35%

Patients in replacement therapy in SA in 2016

Tx. Pts 201711,509Year : 2018 | Volume : 29 | Issue :Total HDPts. 201718270

In 2017, Peritoneal Dialysis a total of 1,389 patients


2016 Total No 26225 pt

2017 Total No 31168 pt

mean total cost of dialysis per patient per year was 46,332 USD (173,784 SR) Total 1,215,056,700 SR * Kalid Al Saran, Alaa Sabry
*audi J Kidney Dis Transpl 2012;23(1):78-82

© 2012 Saudi Center for Organ Transplantation

4.7% increase in new hemodialysis patients. in 2016

Dialysis in the Kingdom of Saudi Arabia. Saudi J Kidney Dis Transpl [serial online] 2018 [cited 2020 Mar 17];29:1012-20. Available from: <u>http://www.sjkdt.org/text.asp?2018/29/4/1012/239666</u>

Risk Factors CKD

Which of following are risk factors for CKD (more than one answer)??

- TB infection
- History of colon cancer
- Smoking
- History of SLE
- Obesity

Risk Factors CKD

Diabetes Mellitus 30%

Hypertension 25%

Old age 50%

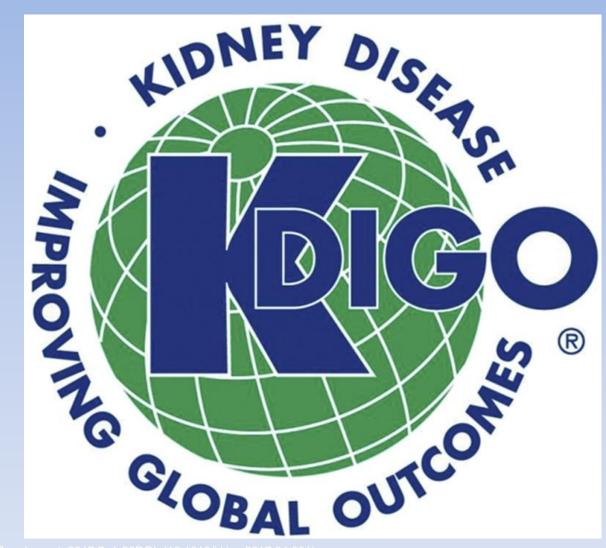
Low GFR AKI

Obesity

Cardiovascular disease

NSAID

Family History

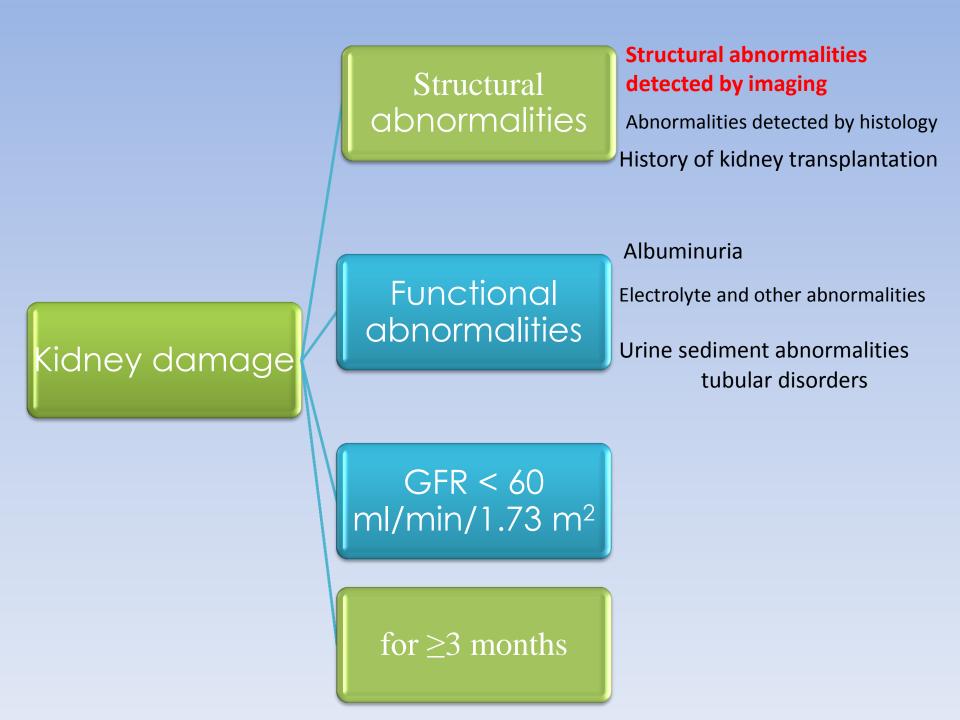

Smoking

Cause of Renal Failure	N	%		
Diabetic Nephropathy	6535	40%		
Hypertensive Nephropathy	6211	38%		
Unknown Etiology	1100	7%		
Primary Tubulo Instertitial Disease	491	3%		
Obstructive Uropathy	339	2%		
Hereditary Renal Disease	279	2%		
Congenital Malformation	271	1.6%		
Vasculitis	215	1%		
Primary Glumerular Disease	128	1%		
Pregnancy Related	73	0.4%		
Others	673	4%		
Total	16,315	100%		
Table 4.8. Causes of end-stage renal disease in HD natients 2016				

 Table 4.8. Causes of end-stage renal disease in HD patients 2016

chronic Kidney disease can be diagnosed ??

- a. If the patient have ultrasound shows scaring in the kidney
- b. If patient have only proteinuria but normal serum Cr
- c. If the patient have high serum creatinine.
- d. If the patient have proteinuria and hematuria with low eGFR

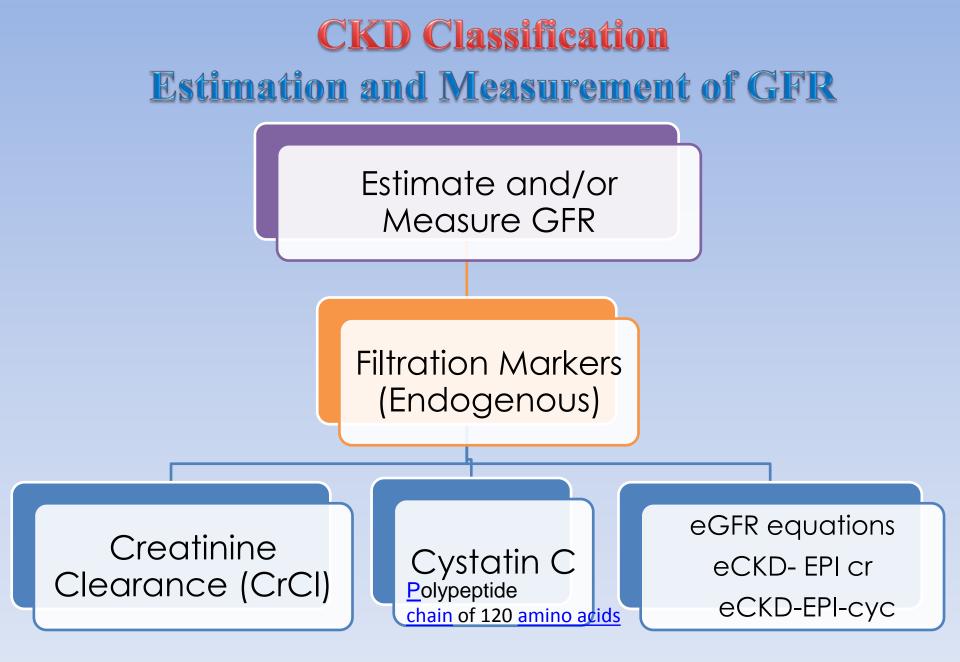


(idney International Supplements 2017 7, 1-59DOI: (10.1016/j.kisu.2017.04.001)

International Supplements 2017 7, 1-59DOI: (10.1016/j.kisu.2017.04.001

Copyright © 2017 KDIGO Terms and Conditions

Staging of chronic kidney disease depend on ?


- a. Measurement of serum creatinine
- b. Measurement creatinine clearance
- c. Estimated GFR
- d. Urine albumin creatinine ratio
- e. Causes of chronic kidney disease

KDIGO recommendation -classified based on:(CGA)

- Cause
- -Stage of CKD (GFR category)
- Albuminuria category

KDIGO recommendation -classified based on:(CGA)

- Cause
- Stage of CKD (GFR category)Albuminuria category

Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)

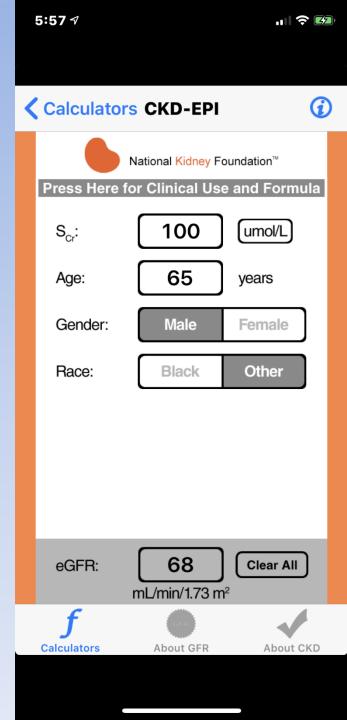
Modification of Diet in Renal Disease (MDRD) Study equation

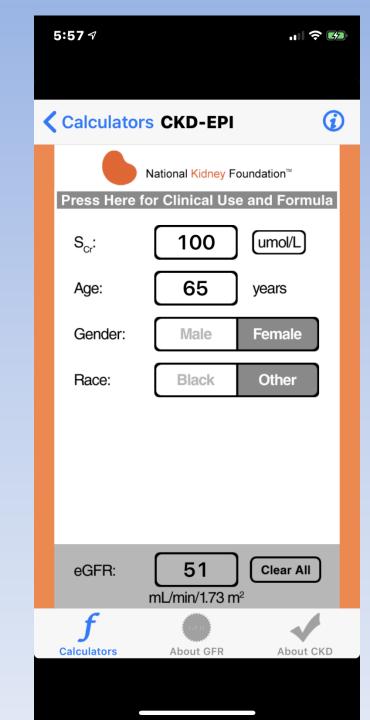
Calculators

National Kidney Foundation[™]

CKD-EPI Creatinine Equation

MDRD Study Equation

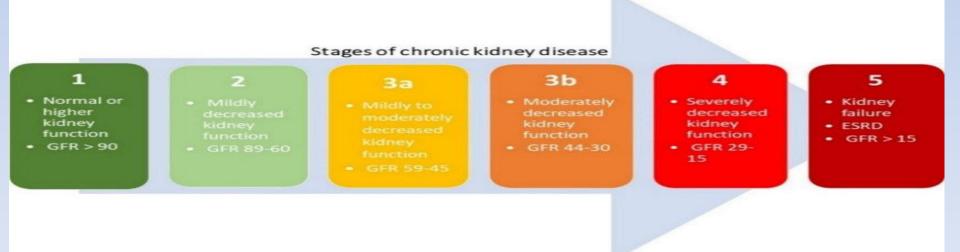

CKD-EPI Cystatin and Creatinine 2012 Equation


Cockcroft-Gault Formula

Revised Bedside Schwartz Formula For ages 1 - 17

CKD – EPI Calculation

National Kidney Foundation [™] Press Here for Clinical Use and Formula						
S _{cr} :		(mg/dL)				
Age:		years				
Gender:	Male	Female				
Race:	Black	Other				
eGFR:	mL/min/1.73 m	Clear All				



Staging

The stages of CKD are classified as follows

- Stage 1: Kidney damage with normal or increased GFR (>90 mL/min/1.73 m²) Normal or high
- Stage 2: Mild reduction in GFR (60-89 mL/min/1.73 m²) Mildly decreased*
- Stage 3a: Moderate reduction in GFR (45-59 mL/min/1.73 m²)
- Stage 3b: Moderate reduction in GFR (30-44 mL/min/1.73 m²)
- Stage 4: Severe reduction in GFR (15-29 mL/min/1.73 m²)
- Stage 5: Kidney failure (GFR < 15 mL/min/1.73 m² or dialysis)

• The majority of cases are stage 3

KDIGO recommendation -classified based on:(CGA)

- Cause
- -Stage of CKD (GFR category)
- Albuminuria category

Albuminuria categories as follows:

*note that where albuminuria measurement is not available, urine reagent strip results can be substituted

Albuminuria categories in CKD

Category	AER (mg/24 hours)	ACR (mg/mmol)	ACR (mg/g)	TERMS
		approximate	equivalent	
A1	< 30	<3	<30	Normal to mildly increased
A2	30-300	3-30	30-300	Moderately increased*
A3	>300	>30	>300	Severely increased**

*Relative to young adult level

** Including nephrotic syndrome (albumin excretion usually > 2200 mg/24 hours

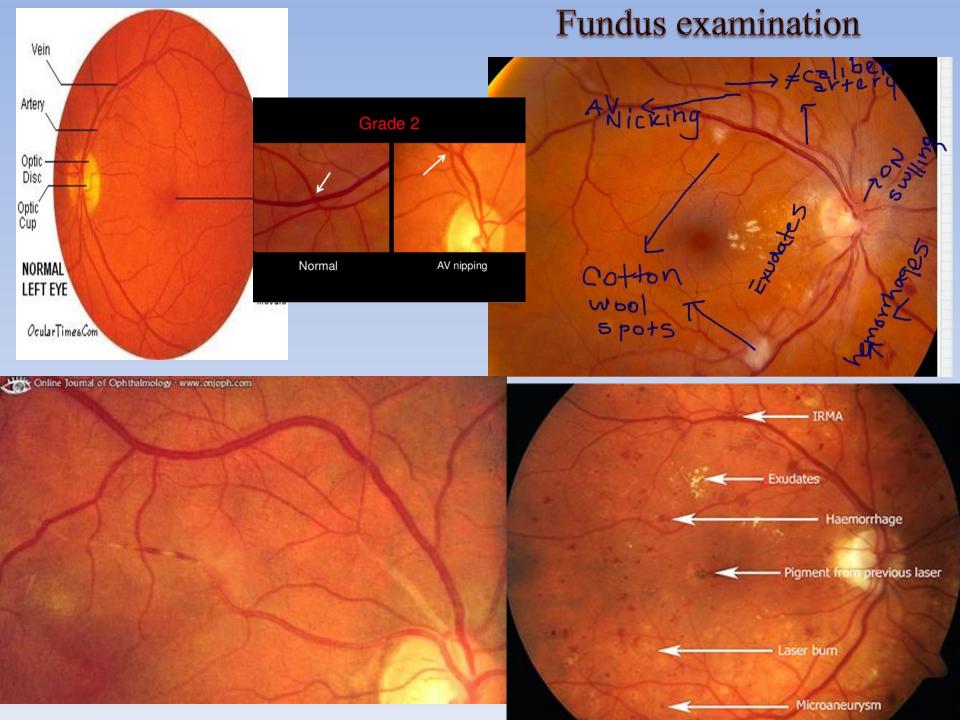
[ACR .2220/g; >220 mg/mmol])1

Prognosis of CKD by GFR and albuminuria categories: KDIGO 2012		Persistent albuminuria categories description and range				
		AI Normal to mildly increased <30 mg/g <3 mg/mmol	A2 Moderately increased 30–300 mg/g 3–30 mg/mmol	A3 Severely increased >300 mg/g >30 mg/mmol		
m²)	GI	Normal or high	≥90			
n/1.73 unge	G2	Mildly decreased	60–89			
GFR categories (mL/min/1.73 m²) description and range	G3a	Mildly to moderately decreased	45–59			
ories (ription	G3b	Moderately to severely decreased	30-44			
t categ desci	G4	Severely decreased	15–29			
GFR	G5	Kidney failure	<15			

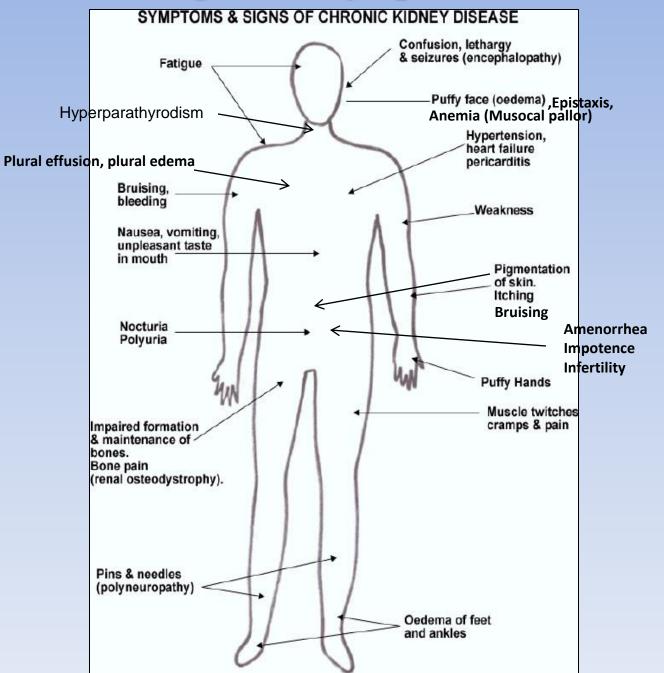
Notes: Green indicates low risk (if no other markers of kidney disease, no CKD); yellow indicates moderately increased risk; orange indicates high risk; red indicates very high risk. Reprinted with permission from Macmillan Publishers Ltd: *Kidney Int Suppl.* 2013;3:1–150. Kidney Disease Improving Global Outcomes (KDIGO). 2012 clinical practice guidelines for the evaluation and management of chronic kidney disease. Copyright © 2013.¹⁵ Abbreviation: CKD, chronic kidney disease.

History

- History of major complain
- History of present illness
 - Upper urinary tract
 - Lower urinary tract
 - History of uremia
 - Systemic review (arthritis ,ch infection ,hepatitis)
 - History of hypertension(cause, duration, control, medication, complication)
 - Diabetes Mellitus(type, duration, control, medication, complication)


History

- Systemic review
- Past Medical illness+ hospitalization
- Surgical
- Medication
- Family
- Social
- Allergy+ medication side effect

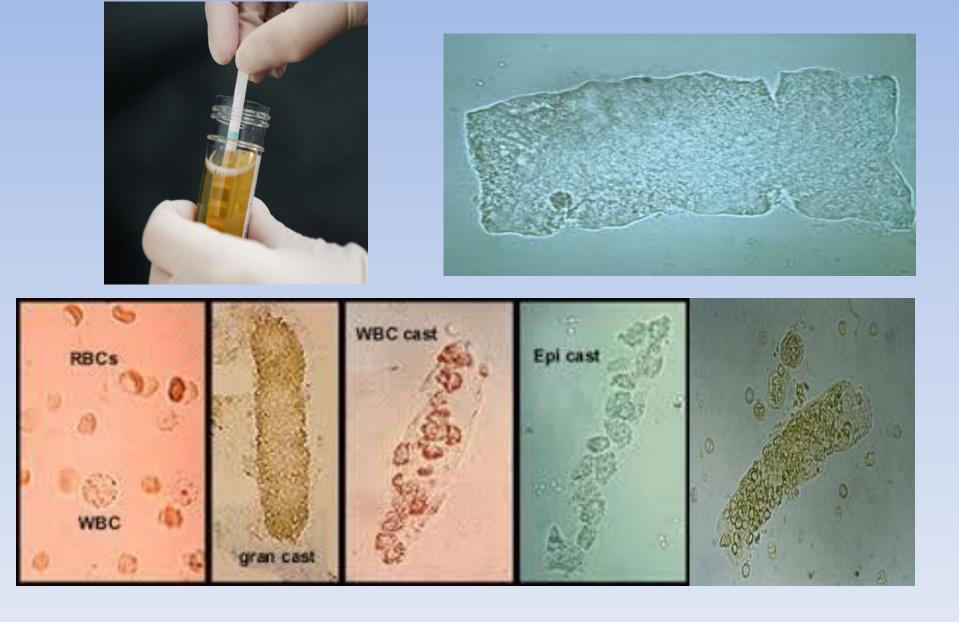

Examination

- General look
- Vital sign
- General examination
- Cardiovascular JVP
- Respiratory
- Abdominal
- CNS

Signs and Symptoms

Which of the following is essential investigation for CKD ?

- Urine electrolyte
- pT, PTT, INR
- Calcitonin & parathyroid hormones
- Kidney Biopsy
- Na,K,Ca, Phosphorus, urea and Cr


Investigations of CKD

- Investigations of diagnosis of CKD
- Investigations to diagnose the cause of CKD
- Investigation to diagnosis the complications of CKD

Investigations of CKD

Basic Laboratory to the diagnosis of CKD can include the following:

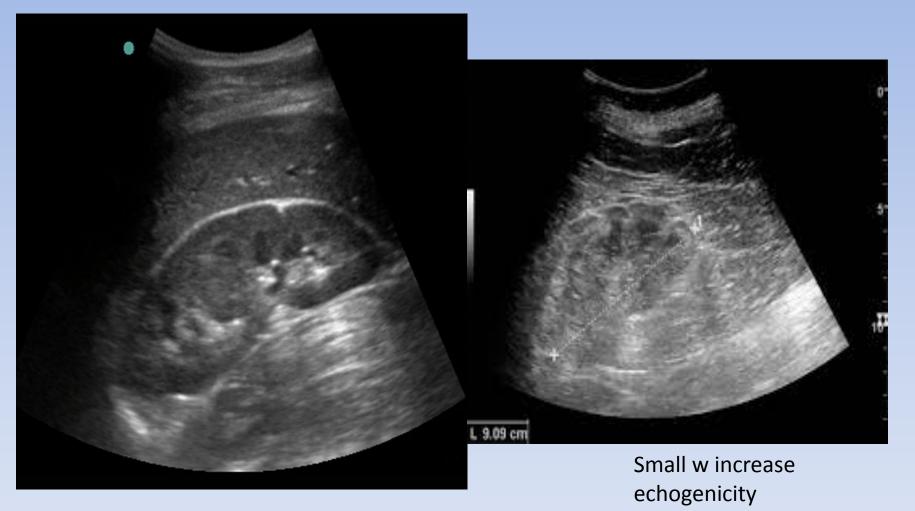
- Complete blood count (CBC)
- Biochemistries(Na, K, Urea, Cr, HCO₃, Ca, PO3, Uric, Albumin, Alk ph)
- Urinalysis
- 24 hour urine collection Creatinine clearance and proteinuria
- Urine albumin:creatinine ratio
- Glucose
- Lipid profile: increased risk of cardiovascular disease

Investigations of CKD

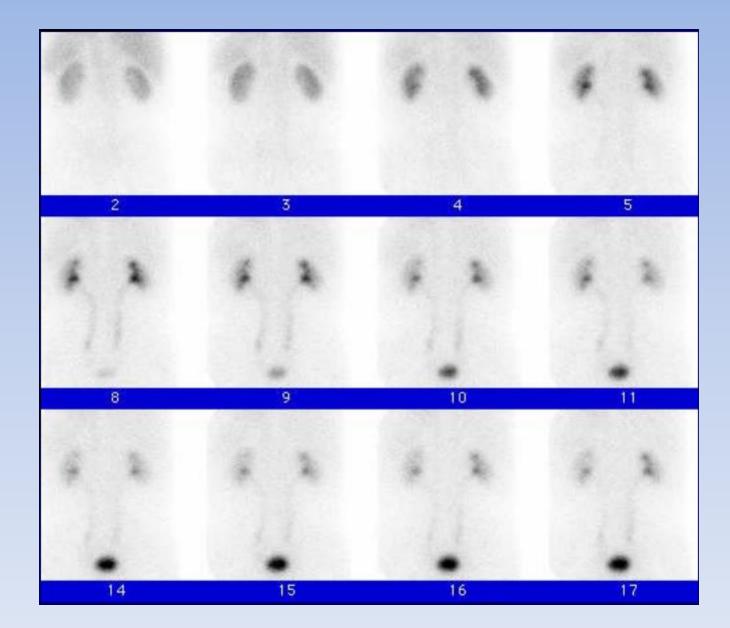
Laboratory studies used in the diagnosis the cause of CKD HbA1c ANA HBsAg HCV.

 C_{3}, C_{4}

Renal Biopsy


CT, MRI, and Radionuclide Scans

• Renal Ultrasonography : initial imaging


• CT, MRI: Intravenous (IV) should be avoided

 Radionuclide Scans: assist GFR & obstruction Tc^{99m}MAG3 and .Tc^{99m}DTPA.Tc^{99m}DMSA

Investigation

Normal size kidneys – 12 cmNormal Echogenicity

Investigation to the diagnosis the complications of CKD PTH VIT D₃ ECH

ECG

Diagnosis of CKD

Different

✓ Acute Kidney Injury form✓ CKD

Differentiating between acute and chronic kidney disease

Treatment of chronic kidney disease??

- a. The treatment usually able to cure chronic kidney disease
- b. Its slow progressive of chronic kidney disease
- c. It include treatment of hypertension and reduce proteinuria
- d. Alkalosis should be treated in chronic kidney disease

Glycemic Control

BP control

Prevention &Slow progress of CKD

CHRONIC KIDNEY DISEASE-MINERAL AND BONE DISORDER

Avoid Nephrotoxic Drug Proteinuria & RAAS

Diet

Protein, PO3 & salt

Correct Acidosis

Hyperlipidemia

Target Blood Pressure in CKD $\leq 130/80$

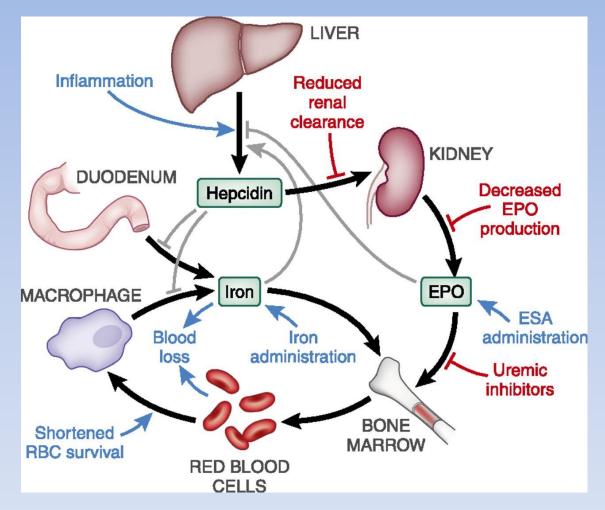
Diabetics and Non-diabetics					
Albuminuria	Drug	g of choice			
A1 <30 mg/d		, Diuretic, RAAS			
A2 >30 mg/d	ARB	or ACE-I			

No B-blocker

Reduce proteinuria

- Low salt diet
- Inhibit renin-angiotensin system (RAS) by Angiotensin-Converting-Enzyme Inhibitor (ACE Inhibition) or angiotensin-II-receptor blocker (ARB)

Renal Diet


- Low salt diet 2.4-3 g/day
- Low potassium diet
 o (2g-2.5 g), half of normal intake
- Low protein diet 0.6 to 0.8 g/kg per day
- Low phosphorous diet 800 1000 mg/day
- Water intake daily water intake 1.5-2 L
- Restricted Magnesium

Treatment of Complications

- Volume overload:
 - o restrict SALT
 - o loop diuretics
- Metabolic acidosis:

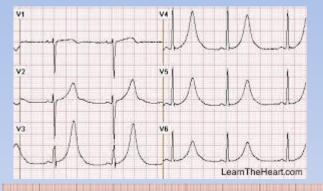
o oral alkali supplementation

Anemia in CKD

Causes Decrease EPO Increase Hepcidin- iron Bone marrow suppression Shortened RBC survival

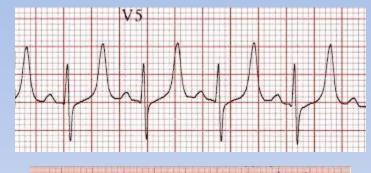
In chronic diseases, high **hepcidin** production inhibits iron release from macrophages and intestinal absorption of iron. This consequently induces an **anemic** condition.

Treatment of anemia


- Anemia: hemoglobin level ↓10 g/dL check iron -iron Tablet or IV erythropoiesis-stimulating agents (ESAs)
 ✓ epoetin alfa
 ✓ darbepoetin alfa
 - Methoxy polyethylene glycol-epoetin beta(Mircera)

Hyperkalemia


- Cause :
- Reduce GFR
- ARBs (angiotensin II receptor blockers). ...
- ACE (angiotensin converting enzyme) inhibitors. ...
- Spironolactone
- High K diet


Asymptomatic & weakness & Arrythmia

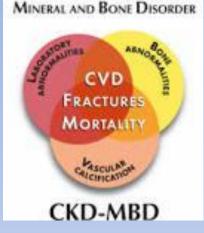
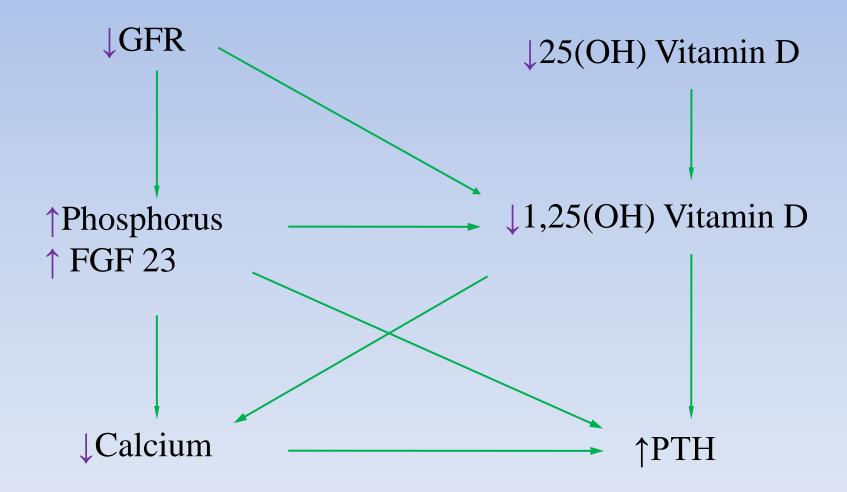


Table 1. Emergency management of acute hyperkalemia

Medication	Response Type	Onset of action	Duration of action	Mechanism of action	•	decrease in otassium level
Calcium gluconate	rapid	1-2 min	30-60 min	Protect cardiomyocy	tes	
Glucose + insulin	intermediate	10-20 min	2-6 hours	•		0.5-1.5 mEq/L (dose dependent)
Beta-agonist	intermediate	3-5 min	1-4 hours	Shift potassium intra	cellularly	
Sodium bicarbonate	intermediate	30-60 min	2-6 hours	Shift potassium intracellularly		
Exchange resin	delayed	2-6 hours	4-6 hours	Elimination of potassium from the body		
Furosemide	delayed	5-30 min	2-6 hours	Elimination of potassium from the body		
Hemodialysis	delayed	immediate		Elimination of potassium	from the body	1mmol/L in the first 60 min and total of 2mmol/L by 180 min

CKD MBD indicate


a. Change in calcium& phosphate¶thyroid hormone, Vit D

CHRONIC KIDNEY DISEASE-

- b. change in the bone metabolize and mineral
- Indicate change in the extra skeletal calcification and vascular, valvular calcification

Mineral abnormalities of Chronic Kidney Disease (CKD)


Renal osteodystrophy

- high bone turnover disease related to secondary hyperparathyroidism (referred to as osteitis fibrosa cystica),
- low turnover disease (referred to as adynamic bone disease),
- osteomalacia (low turnover disease accompanied by undermineralized bone tissue)
- Osteoporosis
- mixed disease where features of both high and low bone turnover disease are present

High bone turnover disease

• osteitis fibrosa cystica),

AP radiograph of the hand in a 66-year-old woman with primary hyperparathyroidism owing to parathyroid adenoma shows subperiosteal bone resorption (arrows) along the radial aspect of 2nd, 3rd, and 4th middle phalanges.

a. extra skeletal calcification and vascular, valvular calcification

CKD-MBD

Hyperphosphatemia

 \checkmark dietary phosphate restriction

✓ dietary phosphate binders (Ca Carbonate, Ca Acetate, Sovlomier, lanthium)

Hypocalcemia

✓ calcium supplements with or without calcitriol

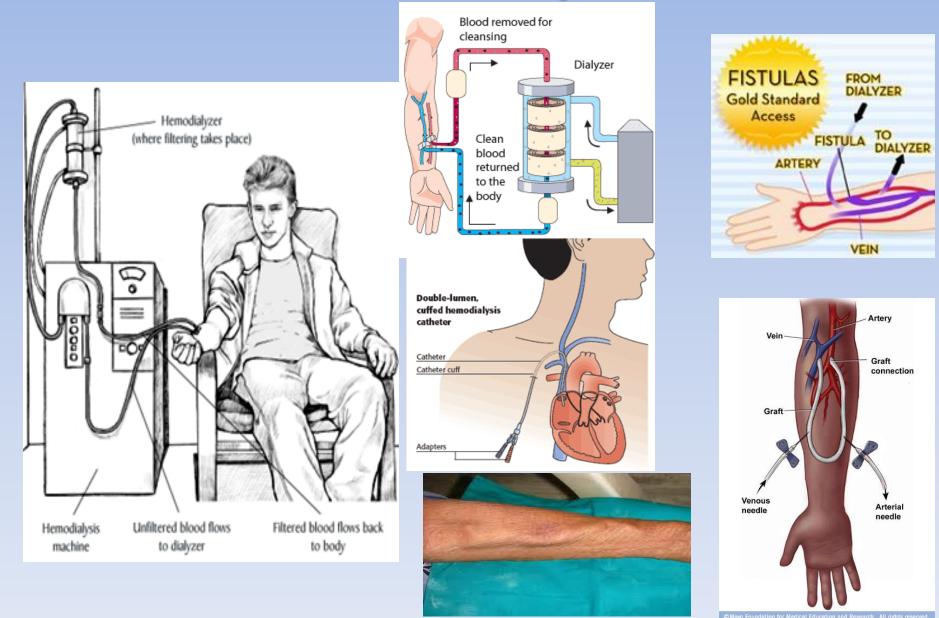
Hyperparathyroidism

✓Calcitriol

✓ vitamin D analogs

Treatment of Complications

• Uremic manifestations:

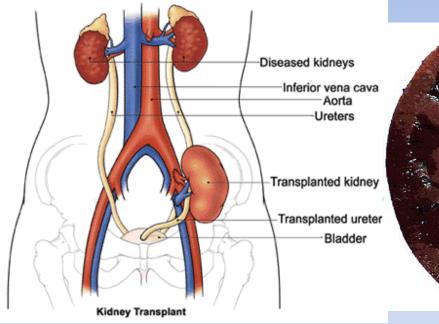

Long-term renal replacement therapy

- ✓ hemodialysis
- ✓ peritoneal dialysis
- \checkmark renal transplantation

Indications for renal replacement therapy

- Severe metabolic acidosis
- Hyperkalemia
- Intractable volume overload
- Pericarditis
- Uremic Symptoms
 - ✓ Encephalopathy
 - ✓ Failure to thrive and malnutrition
 - ✓ Peripheral neuropathy
 - ✓ Intractable gastrointestinal symptoms
- In asymptomatic patients
 ✓ GFR of 5-8 mL/min/1.73 m²

Hemodialysis



Peritoneal Dialysis

Renal Transplantation

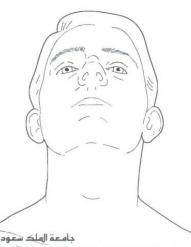
Living related donors (LRD) Living unrelated donors (LURD) deceased organ donors

e www.medindia.net

Renal Transplant Medication

Renal Transplant Rejection& infection

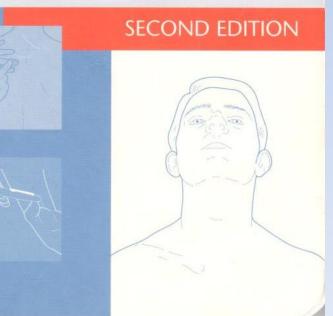
✓ Better qulity of live ,less mortality ,can be before HD


تأليف نيكولاس ج. تالي سيمون أوكونر

NICHOLAS J TALLEY SIMON O'CONNOR

كتاب الفحص الإكلينيكي الجيبي

ترجمۃ أ.د. جمال بن صالح الوکیل



النشر العلمى والمطابع

POCKET CLINICAL EXAMINATION

